
Reference Manual
Contents
Chapter 1 Introduction

Manual Conventions
Syntax Conventions
Printing Conventions

Chapter 2 Definitions
A        B        C        D        E        F        G        H        I        J        K        L        M
N        O        P        Q        R        S        T        U      V      W      X        Y        Z

Chapter 3 Statement Summary
Chapter 4 Keyword Dictionary

A        B        C        D        E        F        G        H        I        J        K        L        M
N        O        P        Q        R        S        T        U      V      W      X        Y        Z

Appendix A Error Codes
1-25 26-49 50-99 100-149
150-299 300-459 460-699 700-899
900-999 2000-2099

Appendix B ASCII Code Chart

Other Manuals
Installing and Using Manual
User's Guide
Basic Plus

{button www.htbasic.com,Inet("www.htbasic.com")}

Distributed with release 8.3

Copyright ® 1988-2001 by TransEra Corp.

Definitions
A

Angle
Array
Array Name
ASCII file type

Definitions
B

BDAT file type
Boolean Expression

Definitions
C

COM Block
COM Block Name
COMPLEX
Context

Definitions
D

Device Selector
DOS file type

Definitions
E

Event

Definitions
F

File Specifier
Full Array Specifier
Function Name

Definitions
I

I/O PATH
Integer
Integer Array
Interface Select Code

Definitions
L

Line Label
Line Number
Local Variable
Long

Definitions
M

Matrix

Definitions
N

Numeric Array
Numeric Array Element
Numeric Constant
Numeric Expression
Numeric Name

Definitions
O

Ordinary file

Definitions
P

Path Specifier
Pen Number
Pipe Specifier
Precedence
Primary Address
Priority
PROG file type

Definitions
R

Real
Record Number

Definitions
S

Scientific Notation
Signal Number
Softkey Macro
Static
String
String Array
String Array Element
String Expression
String Literal
String Name
Sub-string
Subprogram Name
Subscript

Definitions
U

UNIX file type

Definitions
V

Variable Name
Vector
Volume Label
Volume Specifier

Chapter 1

Introduction
High Tech Basic (HTBasic) is a technical programming language compatible with Hewlett Packard's "Rocky
Mountain" BASIC for HP 9000 Series 200/300 computers. It has extensive graphics, instrument control capabilities
and interactive programming aids to speed program development. It is designed to offer powerful features and
ease of use to engineers, scientists and other professionals having a range of programming experience from
novice to expert.

The on line    Reference Manual contains the following chapters:

•    Chapter 1, Introduction
•    Chapter 2, Definitions
•    Chapter 3, Statement Summary
•    Chapter 4, Keyword Dictionary
•    Appendix A, Errors
•    Appendix B, ASCII Code Chart

Chapter 1, "Introduction," is this chapter and introduces the manual layout. It contains conventions used
throughout the manual and syntax rules used in Chapter 4.

Chapter 2, "Definitions," defines general terms and common syntactical units.

Chapter 3, "Statement Summary," lists all the HTBasic statements and indicates which can be executed from the
keyboard, stored in a program, and included in an IF...THEN statement.

Chapter 4, "Keyword Dictionary," lists in dictionary fashion the HTBasic keywords. Entries include syntax diagram,
sample statements, a description of the keyword's functionality and related keywords.

Appendix A, "Errors," lists each error number, cause, and in some cases, possible solutions.

Appendix B, "ASCII Code Chart," contains ASCII, decimal and hexadecimal values and IEEE-488 commands and
addresses.

Manual
Conventions

The following is an example "Keyword Dictionary" entry which explains the rules and conventions used throughout
this manual.

KEYWORD
This line tells what the KEYWORD does.

Syntax: This line defines the syntax.

where: These lines, when present, further define parts of the syntax.

Sample: These lines give samples using the KEYWORD.

Description:
These paragraphs describe in greater detail how the KEYWORD is used. Several conventions
are used to aid your understanding of the keyword. All terms used in the syntax definition are
defined in one of two places. Commonly used terms, such as "numeric-expression," are defined
at the beginning of the Reference Manual. Other terms are defined immediately after they are
used, in the lines following the "where:".

See Also:
LISTS OTHER KEYWORDS RELATED TO THIS ONE.

Syntax
Conventions

The key to understanding the syntax definitions is understanding the punctuation used in the definition. Braces
and vertical bars are used to denote a list of choices. A construct like this:

{ ON | OFF }

means you must specify ON or OFF but not both. Do not enter the braces or the vertical bar. Square brackets are
used to denote optional items. For example,

BEEP [frequency, duration]

means that BEEP may be entered alone or with the frequency and duration. Ellipses (three dots "...") are used to
show that the preceding item can be optionally repeated any number of times. For example, in the definition

ALLOCATE item [,item...]

",item" can be optionally repeated one or more times. Single quotes, "'", are used around the square bracket
symbols when they should be entered literally, instead of interpreted as optional item symbols. For example,

DIM string-name$ '['length']'

means that the bracket characters are part of the statement to dimension a string.

Words in lower-case, like "length" in the example above, are defined either later in the syntax definition itself or in
the definitions at the start of the Reference Manual. Words in uppercase are keywords and should be entered
exactly as shown. Keywords must be separated from one another by spaces. All other symbols should be entered
exactly as shown. Spaces have been added in some definitions to improve readability.

Printing
Conventions

Several printing conventions are used in this manual. In descriptions, keywords are shown in BOLD, UPPERCASE
letters. (In other places, keywords are merely shown in uppercase.) Examples that show exactly what you should
type or what the computer displays are shown in a fixed width font, such as

10 DIM A$[50]

Key names, IEEE-488 bus commands and operating system commands are shown in all uppercase, for example:
ENTER.

Chapter 2
Definitions
This chapter contains definitions of 'Rocky Mountain BASIC' general terms and syntactical units.

Definition
Angle

Angles can be specified in radians or degrees. When specifying angles for graphic statements, the angle is relative
to the positive x axis. Positive angles specify counter-clockwise movement about the origin.

Definition
Array

An array is a multi-dimensional ordered set of values. Each member of the set is called an array element. All the
members of the set have the same simple data type which can be integer, long,    real, complex, or string. The
dimension of the set is called the RANK of the array. Arrays may have a rank from one to six.

Local array variables are declared using INTEGER, LONG, REAL, STATIC, COMPLEX and DIM. ALLOCATE can be used
to dynamically declare an array. COM can be used to declare a global array. Consult these entries in Chapter 4, the
"Keyword Dictionary," to learn how to declare array variables. OPTION BASE is available to change the default
lower bound for indices.

Definition
Array Name

The rules for naming an array are the same as for a variable (see Variable Name). Array variables and simple
variables share the same name space. Thus, you cannot have a simple variable and an array variable with the
same name in the same context.

Definition
ASCII file type

In the HTBasic manual set, the term ASCII file refers to a LIF ASCII file, not a DOS ASCII or UNIX ASCII ordinary file.
A LIF ASCII file is a typed file which contains string items preceded by an item length, and followed by a pad byte
when the string length is odd. Do not confuse the terms DOS ASCII, UNIX ASCII and LIF ASCII. A DOS ASCII file is an
ordinary file which contains only printable characters and the end of each line is marked with a carriage return
and line feed. A UNIX ASCII file is an ordinary file which contains only printable characters and the end of each line
is marked with a line feed. HTBasic can read and write any of these file types. See CREATE and CREATE ASCII in
Chapter 4, the "Keyword Dictionary."

Definition
BDAT file type

BDAT files are used to hold binary data and can be used to exchange data with HP BASIC. See CREATE BDAT in
Chapter 4, the "Keyword Dictionary." Ordinary files can also be used to hold binary data.

Definition
Boolean Expression

A boolean expression is simply a numeric expression whose result is tested for zero/non-zero. If the result is zero,
the expression is considered FALSE. If the result is non-zero, the expression is considered TRUE.

Definition
COM Block

A COM block is a set of one or more variables that may be shared (in "COMmon"), among one or more contexts.
Each COM block is uniquely identified with a name (although one block is allowed to be nameless). COM block
names are explained below.

The value of a COM variable is global in lifetime, however, the name of a COM variable is not global. To access
COM variables, a context must include a COM statement which identifies the COM block and gives the names by
which the variables will be known in that context. Thus, each context can give a different name to the same COM
variable. COM variables are hidden from all contexts which do not include a COM statement accessing that COM
block. See COM in Chapter 4, the "Keyword Dictionary."

Definition
COM Block Name

Rules for naming a COM block are the same as for a variable (see Variable Name).

Definition
COMPLEX

"Complex" is a data type. Other data types are integer, real, string, and I/O path. The Complex data type is a
subset of all rational numbers. The particular subset depends on your computer. Most computers, including the
IBM PC, use IEEE Std 754-1985 for Binary Floating point numbers. This gives the Complex data type an
approximate range of 2E-308 to 1E+308 and 15 decimal digits of precision. Both positive and negative numbers
are represented. MINREAL and MAXREAL are functions which return the smallest and largest positive real
numbers. The range for negative numbers is -MINREAL to -MAXREAL.

Use the COMPLEX statement to declare local complex variables and the COM statement to declare global complex
variables and use the static variables to declare local persistent complex variables. Use the ALLOCATE statement
to declare a local complex variable which can be DEALLOCATEd dynamically. If a variable is not declared, it will
automatically be declared local and real unless CONFIGURE DIM OFF is used.

Definition
Context

A context is a program unit with its own environment, including local variables, which can be called recursively by
other contexts, and can pass arguments, either by reference or by value. There are four types of contexts: 1) main
context, 2) subprogram context, 3) user defined function, 4) CSUB context.

The main context begins with the first line of the program and ends with the program line containing the "END"
statement. The main context is started by a RUN command.

A subprogram context begins with a SUB statement and ends with a SUBEND statement. It is called with a CALL
statement and terminates with a SUBEND or SUBEXIT statement. Arguments can be passed to a subprogram.

A user defined function begins with a DEF statement and ends with an FNEND statement. It is called from within a
numeric or string expression by referencing its name. It terminates and returns a value with a RETURN statement.
The expression then continues to evaluate, using the value returned in place of the function reference. Arguments
can be passed to a function.

A CSUB is a compiled subprogram created with special tools outside of HTBasic. It is loaded into memory with the
LOADSUB statement and removed from memory with the DELSUB statement. It is called with a CALL statement.

Definition
Device Selector

A device selector is a number which specifies a device. It specifies the interface select code (ISC) to which a
device is connected. If more than one device can be connected to that interface (i.e., the GPIB interface), then the
address of the device is appended after the ISC. It can be just a primary address or a primary address and several
secondary addresses. Each address is specified with two digits; thus 1 is specified as 01. A device selector can be
up to 15 digits.

Several examples follow: If a printer has a primary address of 1 and is connected to a GPIB interface with ISC 7,
then the device selector for the printer is 701. If an instrument is connected to the RS-232 interface with ISC 9,
then the device selector for the instrument is 9. If a GPIB plotter has a primary address of 2, a secondary address
of 11 and is connected to a GPIB interface with ISC 14, then the device selector for the plotter is 140211.

Definition
DOS file type

HTBasic supports ordinary files as well as typed files. HTBasic file types are LIF ASCII, BDAT, BIN and PROG. In a
CAT listing ordinary files leave the file type column blank. Unlike typed files, no special header or other embedded
information is placed in the file. An ordinary file with FORMAT ON is compatible with all programs that support DOS
ASCII files. See CREATE in Chapter 4, the "Keyword Dictionary."

Definition
Event

An event is the occurrence of an action or condition which can be trapped by an ON statement that directs
program execution to a service routine. See ON in Chapter 4, the "Keyword Dictionary."

Definition
File Specifier

A file specifier identifies a file. Legal file specifiers depend on the operating system and are summarized here.
Consult your operating system manuals for complete rules.

A file specifier consists of an optional drive letter, an optional path, a filename and an optional filename extension
combined as follows:

d:\path\filename.ext

The drive letter specifies the disk drive, A, B, C, etc. If it is present, it must be followed by a colon, ":". The path is
a series of one or more directory names, separated by the backslash character, "\", leading from the root directory
to the file in question. A legal directory name follows the same rules as a legal filename.

The filename consists of 1 to 256 characters, including one or more extensions. Case is ignored by NT although
when a new filename is specified, case is preserved for display in a directory listing. Some characters are not legal
in a filename. Characters less than CHR$(31) are not legal. The characters in the following list are also illegal:
"*/:<>?\|. Trailing spaces are ignored; elsewhere spaces are acceptable.

Definition
Full Array Specifier

A full array specifier is the symbol "(*)" and is used to reference an entire array rather than an individual element.

Definition
Function Name

The rules for naming a function are the same as for a variable (see Variable Name). A User Defined Function is one
of several types of contexts (see Context).

Definition
I/O PATH

"I/O path" is a data type. Other data types are integer, long,    real, complex    and string. An I/O path is implicitly
declared whenever you use it in a program. It must be initialized with the ASSIGN statement before it is used.
Input and Output statements use an I/O path to specify the entity (device, file, buffer, etc.) that the computer
communicates with during the I/O operation. When an input/output statement does not explicitly involve an I/O
path, one is created internally, used for the duration of the statement and then discarded.

Definition
Integer

“Integer” is a data type. Other data types are I/O path, real, long, complex, and string. Integers are whole numbers
(-1, 35) as opposed to real numbers that can have fractional parts (1.7, 2.34). Integers are stored in two bytes and
have a range of -32768 to +32767. Integer operations are faster and integers take less space to store.

Use the INTEGER statement to declare local integer variables, the COM statement to declare global integer
variables, and the STATIC statement to declare local persistent variables. Use the ALLOCATE statement to declare
a local integer variable which can be DEALLOCATEd dynamically. If a variable is not declared, it will automatically
be declared local and real unless CONFIGURE DIM OFF is used.

Definition
Integer Array

Each element of an array (see Array) is an integer declared with INTEGER.

Definition
Interface Select Code

Interface select codes (ISC) specify hardware interfaces that connect the computer to devices. Some ISCs are
fixed:

ISC Fixed Devices
1 CRT display
2 Keyboard
3 Graphic display
6 Bit mapped graphic
10 Windows Print Manager
26 Parallel Port
32 Processor

Others can be specified when the device is loaded with LOAD BIN. If the ISC is not specified, the following defaults
are used:

ISC Loadable Devices
7 GPIB Board
8 2nd GPIB Board
9 RS-232 Port (COM1)
11 2nd RS-232 Port (COM2)
12 GPIO Board
18 Several data acquisition boards

Definition
Line Label

Line labels may optionally follow any line number. The use of line labels results in more structured programming.
Line references to labels are unaffected by line numbering. The rules for naming a line label are the same as for
variables (see Variable Names). A colon follows the name in the line that is labeled, but does not follow the name
in lines referencing that line.

Definition
Line Number

Each program line requires a unique line number at the beginning of the line. Line numbers must be in the range
of 1 to 4,194,304. HTBasic ignores leading zeros and spaces before line numbers. Line numbers are used to:

•    indicate the order of statement execution
•    provide control points for branching
•    help in debugging and updating programs
•    indicate the location of run-time errors

Definition
Local Variable

All variables are local and are accessible only in the current context unless declared as COM variables. When the
context begins execution, storage space is allocated for all local variables and their values are set to zero. When
execution of the context is completed, the local variable storage space is released and their values are lost.

Definition
Long

Long is a data type. Other data types are I/O path, integer, real, complex, and string. Longs are whole numbers (-
1, 35) as opposed to real numbers that can have fractional parts (1.7, 2.34). Longs are stored in two bytes and
have a range of -2,147,483,648 to 2,147,483,647.

Use the LONG statement to declare local integer variables, the COM statement to declare global integer variables,
and the STATIC statement to declare local persistent variables. Use the ALLOCATE statement to declare a local
long variable which can be DEALLOCATEd dynamically. If a variable is not declared, it will automatically be
declared local and real unless CONFIGURE DIM OFF is used.

Definition
Matrix

A matrix is a two dimensional numeric array. The RANK of a matrix is two.

Definition
Numeric Array

A numeric array is an array (see Array) in which the data type of each element is either integer, long, real or
complex.

Definition
Numeric Array Element

A numeric array element is a simple value, either an integer, real, or complex number and is compatible with any
operation which expects a single value. An element is specified by following the array name with a left
parenthesis, "(", a comma-separated list of subscripts and a right parenthesis, ")". The number of subscripts
specified must match the RANK of the array. The value of each subscript must lie in the legal range for that
dimension as defined in the declaration statement (ALLOCATE, COM, STATIC, COMPLEX, DIM, INTEGER, LONG,
REAL, REDIM). Some matrix operations redefine the range of a dimension.

Definition
Numeric Constant

A constant is an entity with a fixed value. There are three types of numeric constants: integer, long and real. An
integer constant is a whole number not specified with a decimal point, ".", nor with scientific notation, which falls
in the range -2,147,483,647 to 2,147,483,647. Integer constants can be expressed in decimal, octal (base 8) or
hexadecimal (base 16). An octal constant must begin with the characters "&O" or simply "&". A hexadecimal
constant must begin with the characters "&H. A real constant is specified with a decimal point or scientific
notation, or is outside the integer range. Some integer constants are "1", "-20000", "&H7FFF" and "&O377. Some
real constants are "-1.0", "1E+10" and "40000.5".

Definition
Numeric Expression

A numeric expression is any legal combination of operands and operators joined together in such a way that the
expression as a whole can be reduced to a numeric value. The following syntax diagram defines the legal
combination of operands and operators. Precedence rules provide additional constraints on an expression (see
Precedence).

numeric-expression =
{ + | - | NOT } numeric-expression |
(numeric-expression) |
numeric-expression operator numeric-expression |
numeric-constant | numeric-name |
numeric-array-element |
numeric-function [(param [,param...])] |
FN function-name [(param [,param...])] |
string-expression compare-operator string-expression

where:

operator = + | - | * | / | DIV | MOD | MODULO | ^ |
AND | OR | EXOR | compare-operator
compare-operator =      <> | = | < | > | <= | >=
numeric-function = a function, like COS, which returns a numeric value.
param = legal parameters for numeric functions and user defined
functions are explained in Chapter 4, the "Keyword Dictionary"

Definition
Numeric Name

The rules for naming a numeric variable are explained under "Variable Name". A numeric variable is of type
integer, long, real or complex.

Definition
Ordinary file

HTBasic supports ordinary files as well as typed files. HTBasic file types are LIF ASCII, BDAT, BIN and PROG. All
other files are ordinary files. In a CAT listing, the file type column is blank for ordinary files or gives the operating
system (i.e., "DOS" or "HP-UX"). Unlike typed files, no special header or other embedded information is placed in
the file. Under Windows, an ordinary file with FORMAT ON is compatible with all programs that support Windows
ASCII files. See CREATE in Chapter 4, the "Keyword Dictionary."

Definition
Path Specifier

A path specifier in HTBasic is similar to an MSUS (Mass Storage Unit Specifier) in HP BASIC. It identifies a place
where files are stored. Depending on your operating system, the necessary information to uniquely identify such a
place includes: the device, address, volume, unit, and directory path list. A summary of the rules is given here.
Consult your operating system manuals for complete rules.

A path specifier consists of an optional disk drive letter and an optional directory path. If the disk drive letter is
omitted, the default disk is used. A directory path is composed of the names of the directories which form the path
from the root directory "\", to the directory where you wish to access files. Each directory name is separated from
the others with the backslash, "\", symbol. The rules for each directory name are the same as for a filename (File
Specifier). If the directory path is omitted, the default directory is used.

For example, suppose that you wish to use drive "C:" and a catalog of the root directory "C:\" shows a directory
named "HTB". Suppose that a catalog of "C:\HTB" shows a directory named "FILES.BIN". And suppose that it is this
directory you wish to specify with a path specifier. The correct path specifier is "C:\HTB\FILES.BIN". If drive "C:" is
the default drive, then the "C:" could be omitted. If directory HTB is the default directory, then the "\HTB\" could
be omitted. Please read your operating system manual for a greater understanding of these concepts.

Definition
Pen Number

The term "pen number" is used in two different ways. The appropriate range is explained in the text describing the
statement.

The first way in which the term "pen number" is used is for CRT color attribute values. The legal values are:

Pen Color Pen Color
136 White 140 Cyan
137 Red 141 Blue
138 Yellow 142 Magenta
139 Green 143 Black

The second way in which the term "pen number" is used is in statements affecting graphic colors. In these
instances, pen numbers begin at zero and go to N-1, where N is the number of colors displayable at the same time
on the computer display.

Definition
Pipe Specifier

A pipe specifier is a string beginning and/or ending with the pipe character. Under UNIX, the pipe character is the
vertical bar, "|". The remainder of the string specifies one or more processes to be executed. If the pipe-specifier
begins with the "|" pipe character, then OUTPUT can be used to send information to the process. If the pipe-
specifier ends with the pipe character, then ENTER can be used to get information from the process. Pipes are not
supported by HTBasic.

Definition
Precedence

Mathematical precedence describes the order in which operators in an expression are evaluated. Some cheap
calculators execute each operation as it is entered. If you are used to this type of calculator, you may be confused
by the concept of precedence. For example, the correct answer to the formula:

1+2*3+4

is 11, not 13. This is because multiplication (2*3) has a higher precedence than addition (1+2). If the two
operators are on the same row in the precedence chart, the operations occur in left to right order (i.e. 1+2-3+4).

HP BASIC (and HTBasic) has an odd quirk in its definition of precedence which you should be aware of. Most
computer languages place all monadic operators (operators which operate on one operand) at a higher
precedence than dyadic operators (operators which operate on two operands). However, HTBasic and HP BASIC
place monadic + and - below some of the dyadic operators. The following is one example of an expression that
will evaluate differently because of this:

-4^0.5

With HTBasic, this is equivalent to -(4^0.5) which is equal to -2. With most other computer languages, this is
equivalent to (-4)^0.5 which is an illegal operation.

Precedence Table
1 Parentheses () and sub-strings []
2 Functions: built in and user defined.
3 Exponentiation Operator ^
4 Multiplicative Operators *,/,DIV,MODULO,MOD
5 Monadic + and -
6 Dyadic + and -
7 String Concatenation &
8 Relational Operators =,<>,<,>,<=,>=
9 Monadic Logical Operator NOT
10 Logical Operator AND
11 Logical Operators OR and EXOR

Definition
Primary Address

A primary address is a numeric expression which can be rounded to an integer in the range 0 to 31. It specifies
the address of a device on the GPIB bus. Usually, GPIB devices have a switch which allows their primary address
to be set to any of the values 0 through 31.

Definition
Priority

Priority is a measure of the relative importance of the currently executing line and allows higher priority events to
interrupt lower priority events, while preventing lower priority events from interrupting higher priority events.
Priority values can range from 0 (least important) to 15 (most important). The ON statement which defines the
service routine for an event also allows the priority for that service to be defined. The system priority is the
priority of the currently executing line and can be changed with the SYSTEM PRIORITY statement.

Definition
PROG file type

PROG files are used to hold binary program images and are the most efficient file type for storing an HTBasic
program. See STORE in Chapter 4, the "Keyword Dictionary" for information about PROG files.

Definition
Real

"Real" is a data type. Other data types are integer, long, complex, string, and I/O path. The Real data type is a
subset of all rational numbers. The particular subset depends on your computer. Most computers, including the
IBM PC, use IEEE Std 754-1985 for Binary Floating point numbers. This gives the Real data type an approximate
range of 2E-308 to 1E+308 and 15 decimal digits of precision. Both positive and negative numbers are
represented. MINREAL and MAXREAL are functions which return the smallest and largest positive real numbers.
The range for negative numbers is -MINREAL to -MAXREAL.

Use the REAL statement to declare local real variables and the COM statement to declare global real variables and
STATIC variables to declare persistent variables. Use the ALLOCATE statement to declare a local real variable
which can be DEALLOCATEd dynamically. If a variable is not declared, it will automatically be declared local and
real unless CONFIGURE DIM OFF is used.

Please Note: Internally real numbers are represented in a binary format (explained in the User's Guide). You need
not understand this format, but you should understand its implications. It is possible to have two different
numbers in this format whose 15 digit decimal representations are the same. However, when comparing or
subtracting these two "look-equal" numbers, you will find they are not equal. Also, when the result of an
arithmetic operation is a number not representable in the binary format, an approximation must be used instead.
You should take this into account and keep track of the error bounds as approximate numbers are used in further
calculations.

Definition
Record Number

The record number is a numeric expression which is rounded to an integer to specify a record within a file. The
first record is one. BDAT and ordinary files allow random access by specifying a record number in the I/O
statement. The record length for ordinary files is always one. The record length for BDAT files is defined when the
file is created with the CREATE BDAT statement.

Definition
Scientific Notation

Scientific notation can be used to represent numbers by using the shorthand notation "n.nnnEmmm" instead of
"n.nnn x 10^mmm".

Definition
Signal Number

A signal number is a numeric expression rounded to an integer in the range 0 to 15. A signal is an event which can
be generated by the SIGNAL statement and can be handled by a routine set up with the ON SIGNAL statement.

Definition
Softkey Macro

Also called a typing aid, a softkey macro is a sequence of keys assigned to a softkey. When the softkey is pressed,
the sequence is typed into the keyboard buffer just as if you had typed them yourself. The definition of the softkey
macro is user definable.

Definition
Static

STATIC is a data condition. STATIC variables are persistent during a single run of an HTBasic program. Typically, STATIC
variables will only be used in SUB programs and/or FN functions because the MAIN context is usually called only once.

STATIC variables can effectively take the place of COM variables as they are presently used in many cases. If access to a COM
variable is required in multiple SUBs and/or Functions (DEF FN) and/or the Main context, then a STATIC variable is not
appropriate. The scope of a STATIC variable is limited to the context in which it is declared. In other words, a STATIC variable
declared in a SUB program cannot be accessed anywhere other than within that particular SUB program.

Up to 6 bounds may be specified, the initial values are optional. Specifying an initial value for an array initializes each individual
element in all dimensions of the array to the initial value specified.

Definition
String

"String" is a data type. Other data types are integer, real, complex, and I/O path. A string is a combination of ASCII
characters. These are the letters, numbers and symbols that you can type on the keyboard. ASCII characters also
include control characters such as carriage return, etc. A string can be just one character long or it can be one
word, one sentence, one paragraph long or any combination of letters, numbers, spaces and symbols up to a
maximum length of 32767 characters.

Use the DIM statement to declare a local string variable and define its maximum length. The length of a string
variable can never exceed its declared length. Use the ALLOCATE statement to declare a local string variable
which can be DEALLOCATEd dynamically. Use the COM statement to declare a global string variable or use the
STATIC statement to declare a local persistent STRING variable. If a string variable is not declared, it will be
automatically declared as an 18 character maximum length local string variable unless CONFIGURE DIM OFF is
used.

Definition
String Array

A string array is an array (see Array) in which the data type of each element is string.

Definition
String Array Element

A string array element is a simple string and is compatible with any function or operation which expects a single
string value. An element is specified by following the array name with a left parenthesis, "(", a comma-separated
list of subscripts and a right parenthesis, ")". The number of subscripts specified must match the RANK of the
array.

Definition
String Expression

A string expression is any legal combination of operands and operators joined together in such a way that the
expression as a whole can be reduced to a string value. The following syntax diagram defines the legal
combination of operands and operators.

string-expression =
(string-expression) |
string-expression & string-expression |
"string-literal" |
string-name |
string-array-element |
sub-string |
string-function [(param [,param...])] |
FN function-name$ [(param [,param...])]

where:

string-function = a function, like UPC$, which returns a string value.
param = legal parameters for string functions and user defined
functions are explained in Chapter 4, the "Keyword Dictionary."

Definition
String Literal

A string literal is a string of characters delimited by the quote (") character. To include a quote character in the
string, include two quote characters in the place of the one you wish to include. For example " ""hello"" ".

Definition
String Name

The rules for naming a string variable are the same as for a variable (see Variable Name) plus the addition of a
trailing dollar sign, "$". A string variable is a variable whose data type is "string".

Definition
Sub-string

A substring defines a portion of a string variable or string array element. It is selected by specifying a starting
position within the string value and optionally, either the length of the sub-string, or the ending position within the
string value. If only the starting position is specified, the rest of the string value from that point on is used for the
sub-string. String positions are one-based, i.e., the first character of a string is in position one. The syntax is as
follows:

sub-string =
'[' start-pos ']' |
'[' start-pos, end-pos ']' |
'[' start-pos; length ']'

where:

start-pos and end-pos = numeric expression rounded to an integer in the
range 1 to 32767.
length = numeric expression rounded to an integer
in the range 0 to 32767.

Definition
Subprogram Name

The rules for naming a subprogram are the same as for a variable (see Variable Name). A subprogram is one type
of context (see Context).

Definition
Subscript

A subscript is a numeric expression rounded to an integer to specify an array dimension. The value of each
subscript must lie in the legal range for that dimension as defined in the declaring statement (ALLOCATE, COM,
COMPLEX, DIM, INTEGER, LONG, REAL, REDIM). Some matrix operations automatically redefine the range of a
dimension.

Definition
UNIX file type

HTBasic supports ordinary files as well as typed files. HTBasic file types are LIF ASCII, BDAT, BIN and PROG. In a
CAT listing, the file type column is blank for ordinary files or gives the operating system (i.e., "DOS" or "HP-UX").
Unlike typed files, no special header or other embedded information is placed in the file. See CREATE in Chapter 4,
the "Keyword Dictionary."

Definition
Variable Name

A variable name can have up to fifteen characters. The characters can be alphabetic, numerals, underlines and
characters in the range CHR$(128) to CHR$(254). (HP BASIC and some versions of HTBasic use the range
CHR$(161) to CHR$(254).) The first character may not be a numeral or an underline. A variable name can be the
same as a keyword if it is entered partly in upper case and partly in lower case. Variable names are listed with the
first character in upper case and the remaining characters in lower case.

Definition
Vector

A vector is a one dimensional numeric array, i.e., the RANK of the array is one.

Definition
Volume Label

A volume label is present in some operating systems to label a mass storage volume (usually a disk). The rules for
legal volume labels differ from system to system.

Definition
Volume Specifier

A volume specifier in HTBasic is similar to an MSUS (Mass Storage Unit Specifier) in HP BASIC. However, for disk
volumes with multiple directories, a volume specifier does not completely identify a place to store files (see Path
Specifier).

Two types of volume specifiers are supported by HTBasic. The first is the native type used by your operating
system. For Windows, a volume specifier is the drive letter followed by a colon. For example, "C:". If used with a
file specifier, it is appended onto the front of the filename, "C:DATA". For other operating systems, consult your
manuals.

The second type of volume specifier supported by HTBasic is the HP BASIC compatible msus style. For example,
":CS80,700,0". Support for this type is included for compatibility with old HP programs. To use this type of volume
specifier you must use the CONFIGURE MSI statement to define a translation between this type of volume
specifier and the native type used by your system. For example:

CONFIGURE MSI ":CS80,700,0" TO "B:"
CONFIGURE MSI ":A" TO "A:"
CONFIGURE MSI ":,1400,1" TO "C:\HTB\1400\1"

The first example would allow a file specifier such as "DATA:CS80,700,0". The second example would allow a file
specifier such as "DATA:A". If the CONFIGURE statement is not used, then an HP BASIC style volume specifier will
cause an error. The third example shows an HP style volume specifier being equated with a Windows style path
specifier.

Keywords
A

ABORT Stops IEEE-488 activity.
ABORTIO Stops an active TRANSFER.
ABS Returns the absolute value of an expression.
ACS Returns the arccosine of an expression.
ACSH Returns the hyperbolic arccosine of an expression.
ALLOCATE Dynamically allocates memory for string variables and arrays.
ALPHA Controls the visibility of the ALPHA screen area.
ALPHA HEIGHT Sets the number of lines used for the ALPHA screen.
ALPHA PEN Sets the ALPHA display color.
AND Performs the logical conjunction of two expressions.
APPEND See ASSIGN, DUMP DEVICE IS, PLOTTER IS, PRINTALL IS and    PRINTER IS.
AREA Sets or defines an AREA fill color.
ARG Returns the Argument (Angle) of a complex number.
ASCII See    CREATE ASCII and    LEXICAL ORDER IS.
ASN Returns the arcsine of an expression.
ASNH Returns the hyperbolic arcsine of an expression.
ASSIGN Sets up an I/O path and its attributes.
ATN Returns the arctangent of an expression.
ATNH Returns the hyperbolic arctangent of an expression.
ATN2 Returns the angle to a point.
AXES Draws x-y axes.

Keywords
B

BASE Returns the lower bound of an array dimension.
BDAT See    CREATE BDAT and    CONFIGURE BDAT.
BEEP Generates music or sound effects.
BIN See    LIST BIN, LOAD BIN and    SCRATCH.
BINAND Performs a bit by bit logical AND.
BINCMP Performs a bit by bit complement.
BINEOR Performs a bit by bit exclusive OR (EXOR).
BINEQV Performs a bit by bit equivalence operation.
BINIMP Performs a bit by bit implication operation.
BINIOR Performs a bit by bit inclusive OR.
BIT Allows any bit in an INTEGER to be tested.
BREAK Sends a BREAK on a serial interface.
BUFFER See    ASSIGN, COM, DEF FN, DIM, INTEGER, REAL and    SUB.
BYTE See    ASSIGN.

Keywords
C

CALL Starts execution at the specified SUBprogram or CSUB.
CASE See    SELECT ... CASE.
CAT Displays a catalog of files or PROG file contexts.
CAUSE ERROR Simulates a specified error.
CD See    MASS STORAGE IS.
CHANGE Finds and replaces strings.
CHECKREAD Enables/disables verification of data sent to disk.
CHGRP Sets the Group Ownership of a file.
CHOWN Sets the Individual Ownership of a file.
CHR$ Creates an ASCII character from its decimal numeric code.
CHRX Returns the width of a character cell.
CHRY Returns the height of a character cell.
CINT Converts a value to INTEGER.
CLEAR Sends an IEEE-488 bus Device Clear.
CLEAR ERROR Resets all error indicators.
CLEAR LINE Clears the keyboard input line.
CLEAR SCREEN Clears the ALPHA display.
CLIP Changes the clipping rectangle.
CLS See Also CLEAR SCREEN.
CMD See    SEND.
CMPLX Combines real and imaginary parts to return a complex number.
COLOR Defines and selects the color for graphics.
COM Defines global variables.
COMMAND$ Returns a copy of the command line.
COMPLEX Reserves storage for complex variables and arrays.
CONFIGURE BDAT Specifies the byte order for CREATE BDAT.
CONFIGURE CREATE Specifies the kind of file header used with typed files.
CONFIGURE DIM Turns implicit variable dimensioning on or off.
CONFIGURE DUMP Specifies what graphic printer language to use for DUMP.
CONFIGURE KBD Defines keyboard mappings for character sets.
CONFIGURE KEY Assigns editor functions to keyboard keys.
CONFIGURE LABEL Defines characters for the LABEL statement.
CONFIGURE LONGFILENAMES Specifies use of long filenames.
CONFIGURE MSI Specifies HP style volume specifier translations.
CONFIGURE PRT Specifies the value of PRT.
CONFIGURE SAVE Sets the file type produced by SAVE.
CONJG Returns the conjugate of a complex number.
CONT Restarts a program which is PAUSEd.
CONTROL Sends control information to an interface or I/O path.
CONVERT This ASSIGN option is not supported.
COPY Copies files.
COPYLINES Copies one or more program lines from one location to another.
COS Returns the cosine of an expression.
COSH Returns the hyperbolic cosine of an expression.
COUNT See    CAT.

CREATE Creates an ordinary file on the mass storage media.
CREATE ASCII Creates a LIF ASCII file on the mass storage media.
CREATE BDAT Creates a BDAT (binary data) file on the mass storage media.
CREATE DIR Creates directories on the mass storage media.
CRT Returns the integer 1, the CRT interface select code.
CSIZE Sets the character size for LABEL and SYMBOL.
CSUB Compiled SUBprograms.
CSUM See    MAT.
CVT$ Convert strings from one alphabet to another.
CYCLE See    OFF CYCLE and    ON CYCLE.

Keywords
D

DATA Stores data items in the program.
DATE Converts a string representing a date to a number of seconds.
DATE$ Takes a numeric value representing seconds and formats it into a date string.
DEALLOCATE Frees memory space reserved by the ALLOCATE statement.
DEF FN Begins a user-defined function subprogram.
DEG Sets the trigonometric mode to degrees.
DEL Deletes program lines.
DELAY See    ASSIGN, OFF DELAY, ON DELAY, PRINTALL IS and    PRINTER IS.
DELSUB Deletes SUB or CSUB subprograms from memory.
DET Returns the determinant of a matrix.
DIGITIZE Inputs digitized X and Y coordinates.
DIM Dimensions REAL arrays and strings.
DISABLE Disables event-initiated branches.
DISABLE INTR Disables interrupts from the specified interface.
DISP Displays items on the CRT display line.
DISPLAY FUNCTIONS Controls the display of control characters on the CRT.
DIV Returns the quotient of an integer divide operation.
DOT Returns the dot product of two numeric vectors.
DRAW Draws a line to the X,Y location.
DROUND Rounds a numeric-expression to the specified number of digits.
DUMP Copies the contents of the display to a printing device.
DUMP DEVICE IS Defines the printing device used by DUMP.
DVAL Converts a binary, octal, decimal or hexadecimal string to a real number.
DVAL$ Converts a number to a binary, octal, decimal or hexadecimal string.

Keywords
E

ECHO See SET ECHO.
EDGE See IPLOT,PLOT,POLYGON,RECTANGLE,RPLOT and SYMBOL.
EDIT Puts you into program EDIT mode.
EDIT KEY Puts you into softkey EDIT mode.
ELSE See IF ... THEN and SELECT ... CASE.
ENABLE Enables all event-initiated branches suspended by DISABLE.
ENABLE INTR Enables interrupts from a specified interface.
END Marks the end of the program.
END IF See IF ... THEN.
END LOOP See LOOP.
END SELECT See SELECT ... CASE.
END WHILE See WHILE.
ENTER Inputs data and assigns it to variables.
ENVIRON$ Returns information from the operating system environment.
EOL See ASSIGN,PRINTALL IS and PRINTER IS.
ERRDS This function is not supported.
ERRL Compares a line number with ERRLN.
ERRLN Returns the program line number on which the last error occurred.
ERRM$ Returns the error message text of the last error.
ERRN Returns the last error number.
ERROR See CAUSE ERROR,CLEAR ERROR,ERROR RETURN,ERROR SUBEXIT,OFF ERROR,ON

ERROR.
ERROR RETURN Returns program execution to the line following the most recent error.
ERROR SUBEXIT Returns subprogram execution to the line following the most recent error.
EXECUTE Executes an operating system command.
EXIT IF See LOOP.
EXOR Performs a Logical exclusive OR of two expressions.
EXP Returns "e" raised to a power.
EXPANDED See DUMP DEVICE IS.

Keywords
F

FBYTE Determines if character is first byte of a two byte character.
FILL See IPLOT,PLOT,POLYGON,RECTANGLE,RPLOT and SYMBOL.
FIND Searches for specified characters in a program.
FIX Truncates a value to INTEGER.
FN Executes a user-defined function.
FNEND Ends a function definition. See DEF FN.
FOR ... NEXT Executes a loop a fixed number of times.
FORMAT See ASSIGN.
FRACT Returns the fractional part of an argument.
FRAME Draws a frame around the clipping area.
FRE Returns the amount of free memory.
FRENCH See LEXICAL ORDER IS.
FROM See LOADSUB and READ LABEL.

Keywords
G

GCLEAR Clears the graphics screen.
GERMAN See LEXICAL ORDER IS.
GESCAPE Sends device-specific information to a graphic device.
GET Loads LIF, DOS, UNIX, Viper-I and Viper-II ASCII program file into memory.
GINIT Initializes graphics parameters to their default values.
GLOAD Loads an integer array into the CRT display buffer.
GOSUB Transfers control to a subroutine.
GOTO Transfers control to a specified line.
GRAPHICS Makes the graphics screen visible or invisible.
GRAPHICS INPUT IS Defines the device to be used for graphic input.
GRID Draws a grid pattern.
GSEND Sends commands to the PLOTTER IS device.
GSTORE Stores the CRT display buffer into an integer array.

Keywords
H

HELP Outputs Reference Manual pages to the computer screen.

Keywords
I

IDN See MAT.
IDRAW Draws a line an incremental distance.
IF ... THEN Performs an action if a condition is true.
IMAG Returns the imaginary part of a complex number.
IMAGE Defines the format for data input and output.
IMOVE Lifts and moves the logical pen position incrementally.
INDENT Indents a program to reflect its structure.
INITIALIZE Initializes the mass storage media for use by the computer.
INMEM Identifies if a subprogram is loaded.
INP and INPW Inputs a byte or word from an I/O Port.
INPUT Inputs numeric or string data from the keyboard.
INPW See INP.
INT Performs the greatest integer function.
INTEGER Declares, dimensions and reserves memory for INTEGER variables.
INTENSITY See AREA,COLOR and SET PEN.
INTERACTIVE See RESUME INTERACTIVE and SUSPEND INTERACTIVE.
INV See MAT.
IPLOT Moves the pen relative to its present location.
IVAL Converts a binary, octal, decimal or hexadecimal string to an INTEGER.
IVAL$ Converts an INTEGER to a binary, octal, decimal or hexadecimal string.

Keywords
K

KBD Returns a 2, the device select code of the keyboard.
KBD$ Returns the contents of the ON KBD buffer.
KBD CMODE Sets softkey compatibility mode.
KBD LINE PEN Sets the pen color for the input line.
KEY LABELS Controls the display of the softkey labels.
KEY LABELS PEN Sets the color for the softkey labels.
KEY See CONFIGURE KEY,EDIT KEY,LIST KEY,LOAD KEY,OFF KEY,ON KEY,

READ KEY,SCRATCH,SET KEY and STORE KEY.
KNOB See OFF KNOB and ON KNOB.
KNOBX Returns and resets the KNOBX counter value.
KNOBY Returns and resets the KNOBY counter value.

Keywords
L

LABEL Prints text on graphic devices.
LDIR Sets the angle for drawing LABELs and SYMBOLs.
LEN Returns the number of characters in a string.
LET Assigns a value to a variable.
LEXICAL ORDER IS Defines "alphabetical" order for string comparisons.
LGT Computes common (base 10) logarithms.
LINE TYPE Sets the style or dash pattern and repeat length of lines.
LINK Makes a hard link to a file.
LINPUT Assigns alphanumeric keyboard input to a string variable.
LIST Lists the program in memory to the selected device.
LIST BIN Lists each BIN currently in memory.
LIST KEY Lists the softkey macro definitions.
LISTEN See SEND.
LOAD Loads a user program into memory.
LOAD BIN Loads a BIN system program file into memory.
LOAD KEY Loads softkey macro definitions into memory.
LOADSUB Loads a BASIC subprogram into memory.
LOCAL Returns specified IEEE-488 devices to their local state.
LOCAL LOCKOUT Sends the IEEE-488 LLO message.
LOCATOR See READ LOCATOR and SET LOCATOR.
LOCK Secures a file for exclusive access.
LOG Computes natural (base "e") logarithms.
LOOP Defines a series of statements to be executed repeatedly.
LORG Specifies the position of a LABEL relative to the current position.
LWC$ Converts characters in a string to lowercase.

Keywords
M

MASS STORAGE IS Assigns the current mass storage device and directory.
MAT Specifies an array operation.
MAT REORDER Reorders array elements by a supplied subscript list.
MAT SEARCH Searches an array for user specified conditions.
MAT SORT Sorts string or numeric array data.
MAX Returns the maximum value of a list of expressions.
MAXLEN Returns the maximum declared length of a string variable.
MAXREAL Returns the largest positive REAL number.
MERGE ALPHA Enables all planes for Alpha and Graphics.
MIN Returns the minimum value of a list of expressions.
MINREAL Returns the smallest positive REAL number.
MLA See SEND.
MOD Returns the remainder after integer division.
MODULO Returns the true mathematical modulus.
MOVE Moves the logical and physical pens to a new position.
MOVELINES Moves one or more program lines from one location to another.
MSI See MASS STORAGE IS.
MTA See SEND.

Keywords
N

NEXT See FOR.
NOT Returns the logical negation of an expression.
NPAR Returns the number of parameters passed to a subprogram.
NUM Returns the decimal ASCII equivalent of the first character in a string.

Keywords
O

OFF See ALPHA OFF, CLIP OFF, GRAPHICS OFF, TRACE OFF.
OFF CYCLE Cancels event branches defined by ON CYCLE.
OFF DELAY Cancels event branches defined by ON DELAY.
OFF END Cancels event branches defined by ON END.
OFF EOR Cancels event branches defined by ON EOR.
OFF EOT Cancels event branches defined by ON EOT.
OFF ERROR Cancels event branches defined by ON ERROR.
OFF INTR Cancels event branches defined by ON INTR.
OFF KBD Cancels event branches defined by ON KBD.
OFF KEY Cancels event branches defined by ON KEY.
OFF KNOB Cancels event branches defined by ON KNOB.
OFF SIGNAL Cancels event branches defined by ON SIGNAL.
OFF TIME Cancels event branches defined by ON TIME.
OFF TIMEOUT Cancels event branches defined by ON TIMEOUT.
ON Transfers control to one of a list of lines.
ON See ALPHA ON, CLIP ON, GRAPHICS ON
ON CYCLE Defines a repeating event branch.
ON DELAY Defines an event branch after specified seconds.
ON END Defines an event branch for end-of-file conditions.
ON EOR Defines an event branch for end-of-record conditions.
ON EOT Defines an event branch for end-of-transfer conditions.
ON ERROR Defines an event branch for trappable errors.
ON INTR Defines a hardware interrupt initiated branch.
ON KBD Defines an event branch for when a key is pressed.
ON KEY Defines an event branch for when a softkey is pressed.
ON KNOB Defines an event branch for when the KNOB is turned.
ON SIGNAL Defines an event branch for SIGNAL statement.
ON TIME Defines a single event branch for a specific time.
ON TIMEOUT Defines an event branch for an I/O timeout.
OPTION BASE Sets the default lower bound of array subscripts.
OPTIONAL See DEF FN and SUB.
OR Returns the logical inclusive OR of two expressions.
OUT and OUTW Outputs a byte or word to an I/O Port.
OUTPUT Outputs items to a specified destination.
OUTW See OUT.

Keywords
P

PARITY This ASSIGN option is not supported.
PASS CONTROL Passes Active Controller capability.
PAUSE Pauses program execution.
PDIR Sets the rotation angle for IPLOT, RPLOT, POLYGON and RECTANGLE.
PEN Sets the line color or physical pen.
PENUP Raises the PEN on the current plotting device.
PERMIT Changes file protection permissions.
PI Returns the value 3.141 592 653 589 79.
PIVOT Rotates the coordinates of all drawn lines.
PLOT Moves the pen to the specified X and Y coordinates.
PLOTTER IS Specifies the graphics output device and language.
POLYGON Draws a closed regular polygon, circle, or ellipse.
POLYLINE Draws an open regular polygon.
POS Returns the position of one string within another.
PPOLL Conducts a Parallel Poll of the IEEE-488 and returns status.
PPOLL CONFIGURE Configures remote IEEE-488 device parallel poll response.
PPOLL RESPONSE Configures local IEEE-488 device parallel poll response.
PPOLL UNCONFIGURE Disables the parallel poll response of a specified device or devices.
PRINT Outputs data to the PRINTER IS device.
PRINT LABEL Assigns a name to a data storage volume.
PRINT PEN Selects the pen color used for the output area and DISP line.
PRINTALL IS Assigns a logging device for operator interaction and error messages.
PRINTER IS Specifies the system printing device.
PRIORITY See SYSTEM PRIORITY.
PROTECT Changes file attributes.
PROUND Rounds the argument to the specified power of ten.
PRT Returns the default device selector for the printer.
PURGE Deletes a file or a directory on a mass storage media.

Keywords
Q

QUIT Quits BASIC and returns to the operating system.

Keywords
R

RAD Sets the trigonometric mode to radians for all angle measurements.
RANDOMIZE Selects a seed for the RND function.
RANK Returns the number of dimensions in an array.
RATIO Returns the ratio of X to Y hard-clip limits for the PLOTTER IS device.
READ Reads values from DATA statements.
READ KEY Returns one or more softkey macro definitions.
READ LABEL Reads a volume label.
READ LOCATOR Reads the locator device without waiting for a digitize operation.
READIO Reads a hardware register or a memory byte/word.
REAL Reserves storage for floating point variables and arrays.
REAL Converts an INTEGER or COMPLEX number to REAL.
RECOVER See ON-event statements.
RECTANGLE Draws and optionally fills and edges rectangles.
REDIM Redimensions an array by changing the subscript ranges.
REM Begins a REMark or comment line for program documentation.
REMOTE Sets the remote state on a IEEE-488 device.
REN Renumbers program lines.
RENAME Changes the name of a file.
REORDER See MAT REORDER.
REPEAT ... UNTIL Defines a loop that is repeated UNTIL a condition is satisfied.
REQUEST Sends a Service Request SRQ on the IEEE-488.
RE-SAVE Copies the program into the specified ASCII file.
RES Returns the result of the last numeric keyboard calculation.
RESET Resets an interface or file or buffer pointers.
RESET See SUSPEND INTERACTIVE.
RESTORE Specifies which DATA statement to use for the next READ operation.
RE-STORE Stores the BASIC program in a file.
RE-STORE KEY Stores the KEY definitions in a file.
RESUME INTERACTIVE Restores the normal functions of program control keys.
RETURN Returns to the program line following the last GOSUB line.
REV$ Reverses the sequence of characters in a string.
RND Returns a pseudo-random number.
ROTATE Shifts a 16 bit binary value with wraparound.
RPLOT Moves the pen relative to the current graphic location.
RPT$ Returns a string replicated a specified number of times.
RSUM See MAT.
RUN Starts program execution.
RUNLIGHT Controls the display of the pseudo runlight on the display.

Keywords
S

SAVE Saves the current program into an ASCII file.
SBYTE Determines if character is second byte of a two byte character.
SC Returns the interface select code associated with an I/O path name.
SCRATCH Clears user memory.
SEC See SEND.
SECURE Protects programs lines.
SELECT ... CASE Defines a CASE block structure.
SEND Sends messages on the IEEE-488 bus.
SEPARATE ALPHA On a bit-mapped display, simulates 9836 style alpha/graphics hardware.
SET ALPHA MASK Determines which plane(s) can be modified by ALPHA display operations.
SET CHR Defines the bit-patterns for one or more characters.
SET DISPLAY MASK Specifies which planes can be seen on the alpha display.
SET ECHO Sets the echo location on the PLOTTER IS device.
SET KEY Defines one or more softkey macros.
SET LOCATOR Sets a new graphic locator position on the GRAPHICS INPUT IS device.
SET PEN Defines part or all of the color map.
SET TIME Sets the time of day clock.
SET TIMEDATE Sets the date and time of the computer's clock.
SGN Returns the arithmetic sign of an expression.
SHIFT Shifts a 16 bit binary value.
SHOW Defines the graphics unit-of-measure isotropically.
SIGNAL Initiates a software interrupt.
SIN Returns the sine of the argument.
SINH Returns the hyperbolic sine of an expression.
SIZE Returns the number of elements of a dimension of an array.
SORT See MAT SORT.
SOUND Produces tones on the computer speaker.
SPANISH See LEXICAL ORDER IS.
SPOLL Performs a serial poll of a IEEE-488 device.
SQR See SQRT.
SQRT Returns the square root of an expression.
STANDARD See LEXICAL ORDER IS.
STATUS Returns control information from an interface or I/O path.
STEP See FOR.
STOP Terminates program execution.
STORE Stores the BASIC program in a file.
STORE KEY Stores the softkey definitions in a file.
STORE SYSTEM Stores BASIC and loaded BINs into a file.
SUB Defines a subprogram and specifies formal parameters.
SUBEND and SUBEXIT See SUB.
SUM Returns the sum of all elements in a numeric array.
SUSPEND INTERACTIVE Deactivates program control keys.
SWEDISH See LEXICAL ORDER IS.
SYMBOL Allows the user to define symbols that may be used as labels.
SYSBOOT Reboots the computer.

SYSTEM KEYS Displays the System Softkeys Menu.
SYSTEM PRIORITY Sets the system priority to a specified level.
SYSTEM$ Returns system status and configuration information.

Keywords
T

TAB See DISP and PRINT.
TABXY See PRINT.
TALK See SEND.
TAN Returns the tangent of an expression.
TANH Returns the hyperbolic tangent of an expression.
THEN See IF ... THEN.
TIME Converts a time-of-day string to seconds after midnight.
TIME$ Returns a formatted time of day string.
TIMEDATE Returns the current time and date from the clock.
TIMEOUT See OFF TIMEOUT and ON TIMEOUT.
TIMEZONE IS Corrects between GMT and local time for HP BASIC/WS.
TO See COPY, COPYLINES, FOR, MAT SORT, MOVELINES, RENAME, SELECT ... CASE.
TRACE Controls the display of information about a running program.
TRACK Enables or disables tracking of the locator position on the display device.
TRANSFER Performs an unformatted I/O transfer.
TRIGGER Sends a trigger message to all or selected devices on the IEEE-488.
TRIM$ Removes leading and trailing spaces from a string.
TRN See MAT.

Keywords
U

UNL See SEND.
UNLOCK Removes exclusive access protection from a LOCKed file.
UNT See SEND.
UNTIL See REPEAT.
UPC$ Converts characters in a string to uppercase characters.
USER KEYS Displays the specified User Softkey Menu.
USING See IMAGE, ENTER, LABEL, OUTPUT, PRINT.

Keywords
V

VAL Converts a string into a numeric value.
VAL$ Converts a number into its string representation.
VIEWPORT Defines the area of the graphic device used for output.

Keywords
W

WAIT Waits a specified time or for TRANSFER events.
WHERE Returns the logical pen position.
WHILE Repeats an action while a condition is true.
WIDTH See PRINTALL IS and PRINTER IS.
WILDCARDS Enables or disables wildcard support.
WINDOW Sets the bounds for displayable graphics data in user defined units.
WORD See ASSIGN.
WRITEIO Writes to a hardware register or a memory byte/word.

Keywords
X

XREF Generates a cross reference of a program.

Keywords
Z

ZERO This ASSIGN option is not supported.

 Chapter 4
Keyword Dictionary

The following pages contain the HTBasic keywords listed in dictionary fashion. Each entry
includes a syntax diagram, sample statements, a description of the keyword's functionality and
related keywords.

ABORT
Stops IEEE-488 activity.

Syntax: ABORT { interface-select-code | @io-path }

Sample: ABORT 7

ABORT Isc
ABORT @Code

View Sample:    ABORT.BAS (also found in examples directory)
Description:

This command is only legal on the IEEE-488 interface. If the computer is the system controller
but not the active controller, ABORT causes the computer to assume active control.
If a primary address is specified, an error is generated. If the computer is the system controller, the bus action
is to issue IFC for greater than 100 micro-seconds and then to assert REN and de-assert ATN. If the computer
is not the system controller but is the active controller, the bus action is: ATN, MTA, UNL and de-assert ATN. If
it is also not the active controller, no action is taken.

See Also:
CLEAR , LOCAL , PASS CONTROL , PPOLL , REMOTE , REQUEST , SEND , SPOLL , TRIGGER

ABORTIO
Stops an active TRANSFER.

Syntax: ABORTIO @io-path

Sample: ABORTIO @Isc
ABORTIO @Device
View Sample:    ABORTIO.BAS    (also found in examples directory)

Description:
The I/O must be assigned to an interface select code or device selector, not the BUFFER. If an
ON EOT branch is enabled, it will be called. If there is no active TRANSFER on the I/O, then
ABORTIO has no effect. If a TRANSFER was stopped because of an error, ABORTIO report, the
error.

See Also:
BREAK, ON EOR, ON EOT, RESET, TRANSFER, WAIT

ABS
Returns the absolute value of an expression.

Syntax: ABS(numeric-expression)

Sample: J=ABS(X*5)
PRINT "Total losses=";ABS(Sum)
R=ABS(SIN(Theta))
View Sample:    ABS.BAS (also found in examples directory)
Description:

For REAL, INTEGER,and LONG arguments, the result of the ABS f unction is the same type as the
argument.

COMPLEX Arguments
For COMPLEX arguments, ABS returns the absolute value (magnitude or modulus) of the
argument. The absolute value of a number CMPLX(X,Y) is the distance from the origin to the
point (X,Y) in the complex plane:

ABS(CMPLX(X,Y)) = SQRT(X^2+Y^2)

Notice that intermediate values generated during the calculation of the function can cause over
or underflow errors for very large or small values of X and Y. Complex numbers are stored in
rectangular form, but may be used in polar form using ABS and ARG. For example:

PRINT "Magnitude = ";ABS(Z),"Angle = ";ARG(Z)

To enter a number in polar form, convert it from polar form to rectangular in this manner:

10 COMPLEX Z
20 INPUT Magnitude,Angle
30 Z=CMPLX(Magnitude*COS(Angle), Magnitude*SIN(Angle))

See Also:
ARG, FRACT, INT, SGN

ACS
Returns the arccosine of an expression.

Syntax: ACS(numeric-expression)

Sample: Alpha=ACS(R0)
Angle=ACS(Cosine)
PRINT "Angle = ";ACS(Z)
View Sample:    ACS.BAS (also found in examples directory)
Description:

ACS returns the arccosine of a numeric expression whose value is between -1 and +1 inclusive.
The arccosine of a number is the angle whose cosine is that number. ACS returns a value
between 0 and PI radians or 180 degrees, depending on the current trigonometric mode. The
default trigonometric mode is radians.

COMPLEX Arguments
ACS accepts either a COMPLEX or REAL argument and returns a value of the same type. For
COMPLEX arguments the angle is returned in radians, regardless of the current trigonometric
mode. ACS returns the principal value, defined (in terms of complex arithmetic) as

ACS(Z) = CMPLX(0,-1)*LOG(Z+CMPLX(0,1)*SQRT(1-Z^2))

which returns a real part in the range 0 to PI. The domain for COMPLEX arguments includes all
points in the complex plane (but for REAL arguments, the domain is still -1 to +1 inclusive).
Notice that intermediate values generated during the calculation of the function can cause over
or underflow errors for very large or small values of Z.

See Also:
ASN, ATN, COS, SIN, TAN, ASNH, ACSH, ATNH, COSH, SINH, TANH, DEG, PI, RAD

ACSH
Returns the hyperbolic arccosine of an expression.

Syntax: ACSH(numeric-expression)

Sample: Angle=ACSH(Hcosine)
PRINT "Complex Angle = ";ACSH(Z)
View Sample:    ACSH.BAS    (also found in examples directory)
Description:

The hyperbolic arccosine of a number is the angle whose hyperbolic cosine is that number. The
angle is returned in radians, regardless of the current trigonometric mode. ACSH returns the
principal value, defined (in terms of complex arithmetic) as

ACSH(Z) = LOG(Z+CMPLX(0,1)*SQRT(1-Z^2))

which returns an imaginary part in the range 0 to PI. ACSH accepts either a COMPLEX or REAL
argument and returns a value of the same type. The domain for COMPLEX arguments includes
all points in the complex plane, but for REAL arguments, the domain is only defined for points ³
1. Notice that intermediate values generated during the calculation of the function can cause
over or underflow errors for very large or small values of Z.

See Also:
ACS, ASNH, ATNH, COSH, SINH, TANH

ALLOCATE
Dynamically allocates memory for string variables and arrays.

Syntax: ALLOCATE item [,item...]

where: item = [type] numeric-array (bounds) |
variable-name$ [(bounds)] '['length']'

type = REAL | INTEGER | COMPLEX
bounds = [lower-bound:] upper-bound [,bounds...]
Sample: ALLOCATE Chart(Down:Up)
ALLOCATE M$[LEN(N$)+1]
ALLOCATE Group$(Section)[50]
ALLOCATE INTEGER Myarray(Type,3,5)
View Sample:    ALLOCATE.BAS    (also found in examples directory)
Description:

The lower and upper bound range is -32,768 through +32,767, with the default lower bound
range being the OPTION BASE (0 or 1). The string length is a numeric expression rounded to an
integer in the range of 1 through 32,767.

ALLOCATE variables cannot appear in COM, COMPLEX, DIM, INTEGER or REAL declaration
statements or be declared in the subprogram parameter list.

DEALLOCATE frees allocated memory, but because of stack requirements the freed memory

does not become available unless all allocated items are also deallocated. In addition, ON event
statements also use the stack and will not allow the deallocated memory to be available for use
until the ON event statements are released from the stack. Memory ALLOCATEd within a
subprogram is DEALLOCATEd upon exit of that subprogram.

After a variable has been deallocated, it can be reallocated with a different size as long as it has
the same type and number of dimensions.

Porting Issues
Under HTBasic, GOSUB and ALLOCATE use the same stack. Intermixing these statements can
cause changes in available memory that are different from HP BASIC. This usually does not
cause problems.

See Also:
COM, COMPLEX, DEALLOCATE, DIM, INTEGER, OPTION BASE, REAL, REDIM

ALPHA
Controls the visibility of the ALPHA screen area.

Syntax: ALPHA { ON | OFF }

Sample: ALPHA ON
IF Display THEN ALPHA OFF
Description:

ALPHA ON makes the alpha screen visible; ALPHA OFF makes it invisible. The current screen
driver has an effect on the execution of this statement as explained in the following paragraphs.
See PLOTTER IS for an explanation of the screen drivers.

ALPHA ON/OFF has no effect when ALPHA and GRAPHICS are MERGEd. SEPARATE ALPHA must
be executed before this statement has any effect.

See Also:
CLEAR SCREEN, GRAPHICS, MERGE ALPHA WITH GRAPHICS, PLOTTER IS, SEPARATE ALPHA FROM
GRAPHICS

ALPHA HEIGHT
Sets the number of lines used for the ALPHA screen.

Syntax: ALPHA HEIGHT [number-of-lines]

Sample: ALPHA HEIGHT Num
ALPHA HEIGHT 12
View Sample:    ALPHA HEIGHT.BAS    (also found in examples directory)
Description:

The optional number-of-lines is a numeric expression rounded to an integer and must be nine or
greater. The bottom number-of-lines of the CRT are reserved for the alpha display. This can be
useful in reserving the top of the CRT for the display of graphics. This command is equivalent to
a CONTROLCRT,13;lines. If the number-of-lines is not specified, it is reset to the default.

If you are using SEPARATE ALPHA FROM GRAPHICS, you must specify when and where a pen-
number that intersects with the alpha write enable mask. For example, on a 256 color display,
the mask is 192 when SEPARATE. If pen-numbers of 0 to 7 are used, they won't intersect the
mask and no alpha text will be written.

See Also:
ALPHA PEN, KBD LINE PEN, KEY LABELS PEN, PRINT PEN

ALPHA PEN
Sets the ALPHA display color.

Syntax: ALPHA PEN pen-number

Sample: ALPHA PEN Color
ALPHA PEN 137
IF Red THEN ALPHA PEN 2
View Sample:    ALPHA PEN.BAS    (also found in examples directory)
Description:

This statement overrides any ALPHA PEN, PRINT PEN, KBD LINE PEN or KEY LABELS PEN
statements in effect. The pen-number is a numeric expression rounded to an integer. Legal
values are from 0 to 255. This statement is equivalent to CONTROL CRT,5;pen-number.

See Also:
COLOR, KBD LINE PEN, KEY LABELS PEN, PRINT PEN

AND
Performs the logical conjunction of two expressions.

Syntax: numeric-expression AND numeric-expression

Sample: IF A AND B THEN C
First=Last AND Ready
A=Age>19 AND Reply$="YES"
View Sample:    AND.BAS    (also found in examples directory)
Description:

AND returns a value of one (true) or zero (false) from the logical conjunction of two expressions.
The value of j AND k, where j and k are themselves numeric expressions is one (true) only if
both j and k are non-zero. It is zero (false) if either or both j and k are zero. AND can be used in
combination with other logical or math operators in numeric expressions.

See Also:
EXOR, OR, NOT

AREA
Sets or defines an AREA fill color.

Syntax: AREA COLOR hue, saturation, luminosity
AREA INTENSITY red, green, blue
AREA PEN pen-number

Sample: AREA COLOR Hue,Sat,Lum
AREA INTENSITY Red(I),Green(I),Blue(I)
AREA PEN 11
AREA PEN –Numb
Description:

AREA allows you to specify the color used to fill areas. See COLOR for an explanation of how to
specify colors with COLOR, INTENSITY and PEN. The effect of different pen numbers is given in
the Drawing Mode Table, below.

If you specify a color with COLOR or INTENSITY which cannot be produced on the computer
system you are using, the color may be approximated by using an available color which is close
to the color specified. On some displays this may include dithering available colors to produce a
color closer to the one you specified. If dithering is used, the statement will execute slower than
an AREA PEN statement.

The default area fill color is PEN one. The color defined by AREA remains the area fill color until
an AREA, GINIT or SCRATCH A is executed. IPLOT, PLOT, RPLOT or SYMBOL can also be used to
change the area fill color.

Drawing Mode Table
The writing mode of the pen is specified by the current drawing mode and the sign of the pen
number. GESCAPECRT,4 is used to change to normal drawing mode. GESCAPECRT,5 is used to
change to alternate drawing mode. The following table defines the different writing modes
available. P is a positive pen number, X is the present value of a pixel.

GESCAPE CRT,4 GESCAPE CRT,5
Statement Normal Alternate   

AREA PEN P P BINIOR(X,P)
AREA PEN 0 0 0
AREA PEN -P BINAND(X,BINCMP(P)) BINAND(X,BINCMP(P))

See Also:
COLOR, GESCAPE, IPLOT, PEN, PLOT, RPLOT, SYMBOL

ARG
Returns the Argument (Angle) of a complex number.

Syntax: ARG(numeric-expression)

Sample: PRINT "Angle = ";ARG(CMPLX(1,2))
View Sample:    ARG.BAS    (also found in examples directory)
Description:

The Argument of a complex number is the angle in the complex plane between the positive real
axis and a vector to the complex number. Positive angles are counter-clockwise from the positive
real axis. ARG returns the principal value which has a range of -PI to PI radians or -180 to 180
degrees, depending on the current trigonometric mode. Note that the ARG of a real number can
be either 0 or PI (180), depending on whether the number is positive or negative. COMPLEX
numbers are stored in rectangular form, but may be used in polar form using ABS and ARG. For
example:

PRINT "Magnitude = ";ABS(Z),"Angle = ";ARG(Z)

To enter a number in polar form, convert it from polar form to rectangular in this manner:

10 INPUT Magnitude,Angle
20 Z=CMPLX(Magnitude*COS(Angle), Magnitude*SIN(Angle))

See Also:
ABS, CMPLX, DEG, IMAG, RAD, REAL

ASN
Returns the arcsine of an expression.

Syntax: ASN(numeric-expression)

Sample: Beta=ASN(T1)
PRINT "Angle = ";ASN(Sine)
View Sample:    ASN.BAS    (also found in examples directory)
Description:

The arcsine of a number is the angle whose sine is that number. ASN returns a value between
±PI/2 radians or ±90 degrees. The default trigonometric mode is radians unless changed with
the DEG statement. Its argument must be a value between -1 and 1 inclusive.

COMPLEX Arguments
ASN accepts either a COMPLEX or REAL argument and returns a value of the same type. For
COMPLEX arguments the angle is returned in radians, regardless of the current trigonometric
mode. ASN returns the principal value, defined (in terms of complex arithmetic) as

ACS(Z) = CMPLX(0,-1)*LOG(CMPLX(0,1)*Z+SQRT(1-Z^2))

which returns a real part in the range -PI/2 to PI/2. The domain for COMPLEX arguments includes
all points in the complex plane (but for REAL arguments, the domain is still -1 to 1, inclusive).
Notice that intermediate values generated during the calculation of the function can cause over
or underflow errors for very large or small values of Z.

See Also:
ACS, ATN, COS, SIN, TAN, ASNH, ACSH, ATNH, COSH, SINH, TANH, DEG, PI, RAD

ASNH
Returns the hyperbolic arcsine of an expression.

Syntax: ASNH(numeric-expression)

Sample: Beta=ASNH(T1)
PRINT "Angle = ";ASNH(Z)
View Sample:    ASNH.BAS    (also found in examples directory)
Description:

The hyperbolic arcsine of a number is the angle whose hyperbolic sine is that number. The angle
is returned in radians, regardless of the current trigonometric mode. ASNH returns the principal
value, defined (in terms of complex arithmetic) as

ASNH(Z) = LOG(Z+SQRT(Z^2+1))

which returns an imaginary part in the range -PI/2 to +PI/2. ASNH accepts either a COMPLEX or
REAL argument and returns a value of the same type. ASNH is defined at all points for both
COMPLEX and REAL arguments. However, intermediate values generated during the calculation
of the function can cause over or underflow errors for very large or small values of Z.

See Also:
ACSH, ASN, ATNH, COSH, SINH, TANH

ASSIGN
Sets up an I/O path and its attributes, or creates/destroys widgets.

Syntax: ASSIGN @io-path [TO resource] [;attrib [,attrib...]]
ASSIGN @io-path TO *

View Sample:    ASSIGN.BAS    (also found in examples directory)
where: resource = device-selector [,device-selector...] |

file-specifier |

pipe-specifier |
BUFFER {string-name$ | numeric-array(*) | [buf-size]}

attrib = FORMAT {ON|OFF|MSB FIRST|LSB FIRST} | {BYTE | WORD} |
CONVERT {IN|OUT} {OFF | {BY {INDEX|PAIRS} convert$}} |
PARITY {EVEN | ODD | ONE | ZERO | OFF} |
EOL eol-chars [END] [DELAY seconds] | EOL OFF |
RETURN numeric-name | APPEND

buf-size = size of the buffer in bytes
convert$ = string-name. If INDEX, it can have up to

256 characters. If PAIRS, it must have an even
number of characters.

eol-chars = string-expression of up to 8 characters
seconds = numeric-expression rounded to the nearest

0.001 through 32.767 (default is 0)
Sample: ASSIGN @Code TO Isc;FORMAT OFF

ASSIGN @Close TO *
ASSIGN @Devices TO 711,712,715
ASSIGN @Buf1 TO BUFFER Str1$
ASSIGN @B TO BUFFER [12800]
ASSIGN @Buffer TO BUFFER Array(*)
ASSIGN @File TO "C:\MSDOS\FILE2"
ASSIGN @File TO "/unix/CityDir/StFile";APPEND
ASSIGN @T TO 12;WORD,RETURN R,EOL My$ DELAY 1
ASSIGN @Stdout TO "| cat";EOL CHR$(10)
ASSIGN @Pipe TO "finger |"
ASSIGN @Panel TO WIDGET “PANEL”;SET(“X”:5,”Y”:5,
“WIDTH”:500,“HEIGHT”:350,“TITLE”:”Engine Monitor”)
ASSIGN @Strip TO WIDGET “STRIPCHART”;PARENT@Main1,SET
(“X”:5,”Y”:5,”WIDTH”:350,”HEIGHT”:250,”SHOW NUMBERING”:0)
ASSIGN @strip TO * !Destroy the @Strip widget

Description:
ASSIGN makes a connection between a file, buffer, device, or devices and an I/O path name. An
I/O path contains the necessary information to control the input or output of data. It is used in
I/O statements to specify the source or destination of the input or output. An I/O path name can
be placed in a COM statement and can be passed by reference as an argument to subprograms.
I/O operations can be re-directed by re-ASSIGNing the I/O path. ASSIGN may also be used to
change previous I/O path attributes or to close an I/O path.

The ASSIGN statement can be used to:

· Create a new level-0 widget

· Create a widget as a child of an existing widget

· Create a transient widget

· Destroy an existing widget

Within the ASSIGN statement, a “widget handle” (equivalent to an I/O path) is associated with
the new widget.    The widget handle can be used in subsequent statements, such as STATUS,
CONTROL, and ON EVENT, to control the appearance and behavior of the widget.

Also, the widget handle names the widget to be destroyed when ASSIGN@widget handle TO * is
used to destroy a widget.

Devices
To do I/O with an IEEE-488 device which has a primary address of 2, you would use the ASSIGN
statement (assuming the default IEEE-488 interface select code of 7):

ASSIGN @io-path TO 702

To do I/O with a device hooked to the serial port (assuming the port is at the default ISC of 9),
you would use:

ASSIGN @io-path TO 9

A device can have more than one I/O path name (each with different attributes) associated with
it.

An I/O path name can have more than one device assigned to it. If multiple devices are
specified, they must be on the same interface. When OUTPUT is made to an I/O path assigned to
multiple devices, all the devices receive the data. When ENTER is made from multiple devices,
the first device specified sends data to the computer and to all the other devices assigned to the
I/O path name. When CLEAR, LOCAL, PPOLL CONFIGURE, PPOLL UNCONFIGURE, REMOTE or
TRIGGER are made on multiple devices, all the devices receive the IEEE-488 message.

Files
A file is opened when the ASSIGN statement specifies a file-specifier. The file's position pointer
is set to the beginning of the file unless APPEND is specified and is updated to point to the next
byte to be read or written with each ENTER or OUTPUT statement.

Buffers
The statement

ASSIGN @Io_path TO BUFFER [300]

creates an unnamed buffer and assigns it a named I/O path. The

ASSIGN @Io_path TO BUFFER X(*)

statement assigns an I/O path name to a buffer variable previously declared in a COM,
COMPLEX, DIM, INTEGER or REAL statement. The buffer specified in ASSIGN may now be used
in ENTER, OUTPUT or TRANSFER statements. Buffer control information can be read with the
STATUS statement and includes the current number of bytes in the buffer (initially set to 0), the
empty and the fill pointers (initially set to 1) and the buffer capacity.

An I/O path name must exist for as long as its assigned buffer exists. To insure this, the following
rules are used: Buffers cannot be declared in ALLOCATE statements. For a named buffer and its
associated I/O path name, if either appear in a COM block, then the other must also. The same is
true of subprogram parameters or else the buffer must appear in a COM block accessible to the
subprogram. I/O path names assigned to unnamed buffers cannot appear in COM blocks or
subprogram parameters.

Unnamed buffers can only be accessed through their I/O path names. When the I/O path of an
unnamed buffer is closed, the buffer space is deallocated. Named buffers can be directly
accessed through their variable names, although this is not generally recommended. It does not
perform necessary byte order swapping. And the data in the buffer can be changed without
proper update of the buffer control registers (empty and fill pointers, current number of bytes).
To automatically update the buffer control registers use the ENTER, OUTPUT, and TRANSFER
statements.

Binary data in a buffer exists in the byte order of the data source. If that order is different than
the byte order of the computer, then accessing the data through the variable name results in
incorrect data. Again, using ENTER, OUTPUT and TRANSFER to access the data handles the byte
order correctly.

FORMAT
The FORMAT option controls whether data is handled in binary or ASCII. If FORMAT is not
explicitly specified a default format is used as specified in the following. In addition to the HP
BASIC compatible FORMAT ON and FORMAT OFF options, HTBasic also allows the FORMAT
MSB FIRST and FORMAT LSB FIRST options. These options allow explicit specification of the
data byte ordering. If LSB FIRST is specified, then numbers are sent and received with the
Least Significant Byte first. If MSB FIRST is specified, then numbers are sent and received with

the Most Significant Byte first.

LSB is the native byte order for HTBasic. If a device is capable of sending binary data in LSB
format, it should be instructed to do so and FORMAT LSB FIRST should be specified instead of
FORMAT OFF.

BYTE and WORD
When BYTE is included in the ASSIGN statement the data is sent and received as 8-bit bytes.
WORD sends and receives data in 16-bit words and can only be used on a 16-bit interface. The
default form if neither BYTE nor WORD is explicitly specified is BYTE.

CONVERT
When CONVERT is included in the ASSIGN statement a character-conversion table is used
during OUTPUT and ENTER operations (OUT converts during OUTPUT and IN converts during
ENTER). The default attribute is no conversion (CONVERT IN OFF and CONVERT OUT OFF). If
CONVERT OUT is specified then conversions are made after EOL characters are appended but
before parity generation (if PARITY specified). If CONVERT IN is specified then conversions are
made after parity check but before item or statement terminators are checked.

Note: CONVERT is not supported in HTBasic.

When BY INDEX is included, an index system is used in the conversion process. Each original
character is used as an index into the conversion string. CHR$(1) is replaced by the 1st
character, CHR$, (2) is replaced the 2nd character, etc. Note however that CHR$, (0) is replaced
by the 256th character in the conversion string.

When BY PAIRS is included, pairs of characters are used in the conversion process (the original
character and its replacement character). The original characters (odd characters) are searched
in the conversion string. If the original is found it is replaced by the next (replacement)
character. If the original is not found, then no conversion takes place.

PARITY
The most significant bit of the byte is considered the parity bit. On OUTPUT, parity is calculated
after any CONVERT. On ENTER, parity is checked before any CONVERT.

Note: The PARITY option to ASSIGN is not supported in HTBasic. The parity for the serial
interface should be set using the appropriate CONTROL register.

EOL
The default End-Of-Line is a carriage-return (CR) and line-feed (LF) sent with no END indication
and no DELAY. Specifying END causes an interface specific END indication to be sent with the
EOL. On the IEEE-488, END causes EOI to be sent with the final character of the EOL. Specifying
DELAY causes the computer to pause for the specified number of seconds after sending the EOL
and before allowing the program to continue. The delay time depends on the timing resolution
available on the computer you are using. The default EOL can be restored by specifying EOL
OFF.

Note:    LF or CR/LF are always used to terminate ENTER data, regardless of the setting of EOL
in the ASSIGN statement.

RETURN
RETURN can be used with ASSIGN to test whether the ASSIGN operation was successful. If not
successful the error number is returned in the variable specified, otherwise a zero is returned.

APPEND
If APPEND is specified, the file position is moved to the end-of-file after the ASSIGN. If it is not
specified, the file position is moved to the beginning of the file. APPEND is supported on BDAT
and ordinary files, but not LIF ASCII files.

Close I/O Paths

Closing an I/O path makes the path invalid. All subsequent ON event statements for the closed
I/O path are not acted upon. If an I/O path name has not been declared in a COM statement it
may be closed in the following ways:

1. Explicitly close a path by executing: ASSIGN @io-path TO *
2. Re-assigning the I/O path: ASSIGN @path TO resource
3. Exiting the subprogram: SUBEND, SUBEXIT, ON...RECOVER, or RETURN...
4. Stopping the program: END, GET, LOAD, SCRATCH, SCRATCH A, SCRATCH C or STOP

If an I/O path name has been declared in a COM statement it may be closed in the following
ways:

1. Explicitly close a path by executing: ASSIGN @io-path TO *
2. Executing SCRATCH A or SCRATCH C
3. Executing EDIT, GET, LOAD in a program that has a COM statement that does not match the
COM statement that contains the I/O path name.

Changing Attributes
The attributes of a previously ASSIGNed I/O path may be individually changed by omitting "TO
resource" in the ASSIGNstatement. To restore all default attributes use ASSIGN@io-path.

PARENT Option
If no parent is specified when creating a new-widget, the widget is said to be a “level-0” widget. A level-0
(Zero) widget is not constrained to be within another widget, and may exist at any place in the HTBasic for
Windows output window. The X and Y coordinates of the widget are relative to the upper-left corner of the
HTBasic for Windows output window.

Only level-0 widgets may include a title bar, a resize border, and a system menu. The title bar and resize
border allow you to change the position and size of the widget. If a parent is specified, the new widget will be
treated as a “child widget” of its parent. If you attempt to move a child widget outside the border of the
parent widget, the child will be “clipped” at the parent widget’s borders. The child widget’s X and Y
coordinates are relative to the upper-left corner of the parent widget.

Not all widgets can be parents, and not all widgets can be children of parent widgets.

TRANSIENT Option
The TRANSIENT option is used primarily when the resulting widget is to function as a dialog. If you create a
widget using the TRANSIENT option, other non-transient widgets cannot be placed on top of the widget.

If the transient widget has a parent, the transient widget is not restricted to lie within the bounds of its parent
as are other child widgets. Visually, the transient widget appears to be a special type of level-0 widget.

SET Option
All widgets have a variety of attributes that control their appearance and behavior. You can initialize the
values of these attributes at the time of creation of the widget by using the SET option.

Attributes are either scalar (may contain a singel value) of vector (may be assigned an array of values) and
have value of either numeric or string type.

Shorthand: Assigning Attributes

You can use a shorthand method to assign values to several scalar attributes without naming them
individually on the ASSIGN statement. To do this, you store all the attributes in a string array and all
the matching values in another array of the same size.

Then, when you specify both array names in the SET option of the ASSIGN statement, the attribute
named in each element of the string array will be assigned the corresponding value in the value array.
Elements of the string array that contain nothing, or nothing but blanks, will be ignored.

For example:

Attribs$(1) = “X”
Attribs$(2) = “Y”
Attribs$(3) = “WIDTH”
Attribs$(4) = “HEIGHT”
Values(1) = 5
Values(2) = 5
Values(3) = 500
Values(4) = 300

ASSIGN @Panel TO WIDGET “PANEL”;SET(Attrib$(*):Values(*))

Porting From HP BASIC:
When an ASSIGN fails, the previous state of the I/O path is not preserved. Also, the CONVERT
and PARITY options are not implemented.

If changes are made to an ASSIGNed file, the directory entry is not updated until the file is
closed. The Operating System buffers reads and writes to disk. You should not remove a diskette
or turn the power off while a file is ASSIGNed. Exchanging diskettes while a file is ASSIGNed on
the first can destroy the next diskette. Two I/O paths ASSIGNed simultaneously to the same file
can produce slightly different results than HP BASIC, depending on the buffering the OS does.

The HTBasic ASSIGN includes two new options, FORMAT LSB FIRST and FORMAT MSB
FIRST, to specify byte ordering of binary numeric data transfers. This provides the ability to do
binary transfers with any device or computer, regardless of the byte ordering that device uses.

See Also:
CREATE, CREATE ASCII, CREATE BDAT, PURGE, ENTER, OUTPUT

ATN
Returns the arctangent of an expression.

Syntax: ATN(numeric-expression)

Sample: C2=ATN(4.5)
PRINT "Angle = ";ATN(Ang1)
View Sample:    ATN.BAS    (also found in examples directory)
Description:

The arctangent of a number is the angle whose tangent is that number. ATN returns a value
between ±PI/2 radians or ±90 degrees, depending on the current trigonometric mode. The
default trigonometric mode is RAD. Use DEG to change to degrees.

COMPLEX Arguments
ATN accepts either a COMPLEX or REAL argument and returns a value of the same type. For
COMPLEX arguments the angle is returned in radians, regardless of the current trigonometric
mode. ATN returns the principal value, defined (in terms of complex arithmetic) as

ATN(Z) = CMPLX(0,1/2)*LOG((CMPLX(0,1)+Z)/(CMPLX(0,1)-Z))

which returns a real part in the range -PI/2 to PI/2. The domain for COMPLEX arguments includes
all points in the complex plane except CMPLX(0,1). Notice that intermediate values generated
during the calculation of the function can cause over or underflow errors for very large or small
values of Z.

See Also:
ACS, ASN, COS, SIN, TAN, ASNH, ACSH, ATNH, COSH, SINH, TANH, DEG, PI, RAD

ATNH
Returns the hyperbolic arctangent of an expression.

Syntax: ATNH(numeric-expression)

Sample: C2=ATNH(CMPLX(4.5,2))
PRINT "Angle = ";ATNH(Z)
View Sample:    ATNH.BAS    (also found in examples directory)
Description:

The hyperbolic arctangent of a number is the angle whose hyperbolic tangent is that number.
The angle is returned in radians, regardless of the current trigonometric mode. ATNH accepts
either a COMPLEX or REAL argument and returns a value of the same type. For REAL arguments
the domain is between -1 and 1. For complex arguments, ATNH returns the principal value,
defined (in terms of complex arithmetic) as

ATNH(Z) = 1/2*LOG((1+Z)/(1-Z))

which returns an imaginary part in the range -PI/2 to PI/2. The domain for COMPLEX arguments
includes all points in the complex plane except CMPLX(±1,0). Notice that intermediate values
generated during the calculation of the function can cause over or underflow errors for very
large or small values of Z.

See Also:
ACSH, ASNH, COSH, SINH, TANH

ATN2
Returns the angle to a point.

Syntax: ATN2(y, x)

where: x and y = numeric-expressions

Sample: PRINT "Angle=";ATN2(1,2)
View Sample:    ATN2.BAS    (also found in examples directory)
Description:

ATN2(x,y) returns the angle between the positive real x-axis and a vector to the point (x,y).
Positive angles are counter-clockwise from the x axis. ATN2 returns a value in the range of -PI to
PI radians or -180 to 180 degrees, depending on the current trigonometric mode. ATN2(0,0) is
undefined and causes an error.

ATN2(y,x) is so named because of its similarity to ATN(y/x). However, ATN(y/x) does not
calculate correct angles for points in the 2nd and 3rd quadrants. In some languages, this
function is named ANGLE(x,y). In HTBasic, it is named ATN2(y,x) to match HP Series 80 BASIC.

Porting to HP BASIC:
ATN2 is a new HTBasic function that is not available in HP BASIC. It should not be used in
programs that must be ported back to HP BASIC.

See Also:
ABS, ARG, DEG, RAD, SQRT

AXES
Draws x-y axes.

Syntax: AXES [x1 [,y1 [,x2 [,y2 [,x3 [,y3 [,major]]]]]]]

where: x1,y1 = numeric-expressions, x,y tick spacing
x2,y2 = numeric-expressions, x,y origin of axis
x3,y3 = numeric-expressions, rounded to integers, major tick counts
(range 1 through 32767)
major = numeric-expression, rounded to an integer, major tick size

Sample: AXES 5,5,0,100
AXES X,Y,Midx,Midy,Maxx/10,Maxy/10
View Sample:    AXES.BAS    (also found in examples directory)
Description:

The AXES statement draws X-Y axes. You may specify the tic spacing on each axis in WINDOW
units by giving two arguments, one for the x tic spacing and one for the y tic spacing; the
default 0,0 means don't draw ticks. You may then specify the axes origin in WINDOW units; the
default is 0,0. Also, you may specify the number of ticks between major tick marks; the default
is 1,1 meaning that every tick is major. Lastly, you may specify the major tick size in VIEWPORT
units; the default is 2.

The axes extend across the soft-clip area and the tick marks are symmetric about the axes but
are clipped by the soft-clip area. If the x or y axis is outside the clip area, then tick marks are
drawn into the non-clip area. The axes and tick marks are drawn in the current line style and pen
color. A major tick is placed at the axis origin. The minor tick marks are half the size of the major
tick marks.

See Also:
FRAME, GRID, LINE TYPE, PEN

BASE
Returns the lower bound of an array dimension.

Syntax: BASE(array-name[$],dimension)

where: dimension = integer between 1 and 6 £ RANK of array

Sample: Lwr=BASE(Yarray$,Dim)
Uppr(2)=BASE(A,2)+SIZE(A,2)-2
View Sample:    BASE.BAS    (also found in examples directory)
Description:

BASE returns the current lower bound of an array dimension. This might be different than the
DIMensioned value if a REDIM or matrix statement has changed it. This function is also useful in
a subprogram where an array is passed in as one of the parameters.

See Also:
ALLOCATE, DIM, OPTION BASE, RANK, REDIM, SIZE

BEEP
Generates music or sound effects.

Syntax: BEEP [frequency, duration]

Sample: BEEP
BEEP Tone,Seconds
BEEP Freq,Duration
BEEP 75.5*Freq,Sec
View Sample:    BEEP.BAS    (also found in examples directory)
Description:

BEEP generates a frequency for a specified duration in seconds. On computers that do not
provide control for variable frequency sound generation, BEEP generates a beep or bell sound.
The range of the duration is 0 to 2.55 and is rounded to the nearest 0.01 seconds, subject to the
timing resolution of your computer system. The value 2.55 is used for any duration greater than
2.55. If no frequency or duration is specified, a 1220.7 Hz beep is generated for 0.2 seconds.

Usage Notes
The period (not the frequency) is rounded to a multiple of 0.838 micro-seconds. The range of
frequencies is 40.7 Hz to 32.767 KHz. (HP BASIC rounds the frequency value to a multiple of
81.38 Hz and supports a range of 81 Hz to 5.208 KHz.)

See Also:
SOUND

BINAND
Performs a bit by bit logical AND.

Syntax: BINAND(arg, arg)

where: arg = numeric-expression rounded to an INTEGER range -32768 to +32767

Sample: I=BINAND(J,K)*6
IF BINAND(Low,4) THEN CALL Set
View Sample:    BINAND.BAS    (also found in examples directory)
Description:

Use BINAND to clear or test specific bits. BINAND(A,B) converts the values of A and B to
integers. The integer values of A and B are then treated as unsigned binary numbers.
Corresponding bits in A and B are then ANDed together. If both corresponding bits in A and B are
a 1 the resulting bit is set to a 1 otherwise it is set to a 0. The following example:

BINAND(12,6)

performs a bit by bit logical AND of 12 with 6.

12 = 0000000000001100
6 = 0000000000000110
BINAND(12,6) = 0000000000000100

The resulting binary number represents 4.

See Also:
BINCMP, BINEOR, BINEQV, BINIMP, BINIOR, BIT, ROTATE, SHIFT

BINCMP
Performs a bit by bit complement.

Syntax: BINCMP(arg)

where: arg = numeric-expression rounded to an INTEGER

Sample: B=BINCMP(A)
View Sample:    BINCMP.BAS    (also found in examples directory)
Description:

The result of BINCMP(A) is calculated by first converting the value of A to an integer. The
integer value of A is then treated as a binary number. Each bit of the result is set to 1 if the
corresponding bit of A is 0 and is set to 0 if the corresponding bit of A is 1. Here is an example of
how BINCMP works:

BINCMP(13)

The number 13 is considered a binary number, then the bitwise complement is performed:

13 = 0000000000001101
BINCMP(13) = 1111111111110010

The resulting binary number represents -14.

See Also:
BINAND, BINEOR, BINEQV, BINIMP, BINIOR, BIT, ROTATE, SHIFT

BINEOR
Performs a bit by bit exclusive OR (EXOR).

Syntax: BINEOR(arg, arg)

where: arg = numeric-expression rounded to an INTEGER

Sample: M=BINEOR(J,K)
Toggle=BINEOR(Toggle,4)
View Sample:    BINEOR.BAS    (also found in examples directory)
Description:

BINEOR is useful when you want to "toggle" a certain bit or bits. BINEOR(A,B) converts the
values of A and B to integers. The integer values of A and B are then treated as unsigned binary
numbers. Each bit of the result is set to 1 if exactly one of the corresponding bits for either A or
B is 1 and is set to 0 if the corresponding bits of A and B are both 0 or both 1. An example of
BINEOR follows:

BINEOR(12,6)

The numbers 12 and 6 are considered binary numbers, then the bitwise exclusive OR is
performed.

12 = 0000000000001100
6 = 0000000000000110
BINEOR(12,6) = 0000000000001010

The resulting binary number represents 10.

See Also:
BINAND, BINCMP, BINEQV, BINIMP, BINIOR, BIT, ROTATE, SHIFT

BINEQV
Performs a bit by bit equivalence operation.

Syntax: BINEQV(arg, arg)

where: arg = numeric-expression rounded to an INTEGER

Sample: J=BINEQV(&HFF00,Var)
I=BINEQV(15,J)
View Sample:    BINEQV.BAS    (also found in examples directory)
Description:

The result of BINEQV(A,B) is calculated by converting A and B to integer values. Then each bit
of the result is set to 1 if the corresponding bits in A and B are equal. This table illustrates this
relationship.

A B BINEQV(A,B)
0 0 1
0 1 0
1 0 0
1 1 1

The following example:

BINEQV(12,6)

performs a bit by bit equivalence of 12 and 6.

12 = 0000000000001100
6 = 0000000000000110
BINEQV(12,6) = 1111111111110101

The resulting binary number represents -11.

Porting to HP BASIC:
BINEQV is a new HTBasic function that is not available in HP BASIC. It should not be used in
programs that must be ported back to HP BASIC.

See Also:
BINAND, BINCMP, BINEOR, BINIMP, BINIOR, BIT, ROTATE, SHIFT

BINIMP
Performs a bit by bit implication operation.

Syntax: BINIMP(arg, arg)

where: arg = numeric-expression rounded to an INTEGER

Sample: K=BINIMP(Var,&O377)
I=BINIMP(12,J)
View Sample:    BINIMP.BAS    (also found in examples directory)
Description:

The result of BINIMP(A,B) is calculated by converting A and B to integer values. Then each bit of
the result is set to 1 or 0 depending on the corresponding bits in A and B. The following truth
table defines the implication operation:

A B BINIMP(A,B)
0 0 1
0 1 1
1 0 0
1 1 1

Note that the operation is not commutative. That is, BINIMP(A,B) <> BINIMP(B,A). The
following example:

BINIMP(12,6)

performs a bit by bit implication of 12 and 6.

12 = 0000000000001100
6 = 0000000000000110
BINIMP(12,6) = 1111111111110111

The resulting binary number represents -9.

Porting to HP BASIC:
BINIMP is a new HTBasic function that is not available in HP BASIC. It should not be used in
programs that must be ported back to HP BASIC.

See Also:
BINAND, BINCMP, BINEOR, BINEQV, BINIOR, BIT, ROTATE, SHIFT

BINIOR
Performs a bit by bit inclusive OR.

Syntax: BINIOR(arg, arg)

where: arg = numeric-expression rounded to an INTEGER

Sample: Set=BINIOR(Byte,Bit)
Msb=BINIOR(-1,2^14)
View Sample:    BINIOR.BAS    (also found in examples directory)
Description:

BINIOR can be used to set specific bits. BINIOR(A,B) converts the values of A and B to integers.
The integer values of A and B are then treated as unsigned binary numbers. Each bit of the
result is set to 1 if the corresponding bit of either or both A or B is 1, and 0 if the corresponding
bits of both A and B are 0. An example of BINIOR is:

BINIOR(12,6)

The numbers 12 and 6 are considered binary numbers, then the bitwise OR is performed.

12 = 0000000000001100
6 = 0000000000000110
BINIOR(12,6) = 0000000000001110

The resulting binary number represents 14.

See Also:
BINAND, BINCMP, BINEQV, BINIMP, BINEOR, BIT, ROTATE, SHIFT

BIT
Allows any bit in an INTEGER to be tested.

Syntax: BIT(arg, bit-position)

where: arg = numeric-expression rounded to an INTEGER
bit-position = numeric-expression rounded to an INTEGER

Sample: Db1=BIT(Db1,4)
Flag=BIT(byte,0)
IF BIT(Byte,Abit) THEN PRINT "Bit #"; Abit;"is on"
View Sample:    BIT.BAS    (also found in examples directory)
Description:

Use BIT to test any bit in an integer without having to manually search the integer for the
desired bit value. The bit positions are numbered from 0 to 15 with 0 being the right-most or
least significant bit position. If the bit is set BIT returns a 1, otherwise BIT returns a 0. An
example of BIT follows:

BIT(12,3)

The number 12 is considered a binary number and tested in this manner:

12 = 0000000000001100
Bit 3 = 0000000000001000
BIT(12,3) = 1

The result is 1 because bit 3 is set in the number 12.

See Also:
BINAND, BINCMP, BINEQV, BINIMP, BINEOR, BINIOR, ROTATE, SHIFT

BREAK
Sends a BREAK on a serial interface.

Syntax: BREAK { @io-path | interface-select-code }

Sample: BREAK 9
BREAK @Serial
View Sample:    BREAK.BAS    (also found in examples directory)
Description:

A BREAK signal is sent by manipulating the Data Out signal in the following manner: a logic
high of 400-ms is sent followed by a logic low of 60-ms. The BREAK is sent immediately. The
interface must be a serial interface.

See Also:
ABORTIO, RESET

CALL
Starts execution of specified SUBprogram or CSUB.

Syntax: [CALL] subprogram-name [(argument [,argument...])]
CALL sub-pointer [WITH (argument [,argument...])]

where: sub-pointer = string expression with subprogram name
argument = pass-by-reference    |    pass-by-value
pass-by-reference = @io-path    |    variable-name[$][(*)]    |

string-array-element    |    numeric-array-element
pass-by-value = (variable-name[$])    |    numeric-constant    |

numeric-expression    |    (numeric-array-element)    |
"string-literal"    | string-name$ [(subscripts)] sub-string |
string-expression    |    (string-array-element)

Sample: CALL Deriv(X,Y)
Fft(Array(*))
CALL Test(Ref,(Value),@Source)
CALL A$ WITH (4,1.23,"hello")
View Sample:    CALL.BAS    (also found in examples directory)
Description:

CALL transfers control to the specified SUBprogram. The context is changed to the SUB and
begins running at the statement following the SUB statement. The subprogram continues to run
until it encounters a SUBEND or SUBEXIT, at which point control returns to the statement after
the CALL. If more than one SUB exists with the same name, control is transferred to the SUB
with the lowest line number. The name of the SUB may be specified explicitly or in a string
expression (sub-pointer):

CALL Clayton ! Explicit
CALL "Clay"&"ton" ! String expression

CALL may also pass arguments to the subprogram. The list of arguments in the CALL statement
must match, in type and number, the list of parameters in the SUB statement. The CALL

statement may pass the arguments by reference or value as shown in the syntax description
above. Pass-by-value means that the subprogram receives only the value and cannot change
any variables in the calling subprogram. Pass-by-reference means that the subprogram is told
the variable's location in memory (the variable's address), so that the subprogram can use and
modify the variable itself.

The CALL keyword may be omitted if the CALL statement is alone on a line and the subprogram
name is specified explicitly, but if it is part of another statement, such as an IF, then it is
required.

Subprogram Pointers
If a string expression specifies the subprogram name in the CALL statement, the string
expression is called a subprogram pointer because it "points" to the subprogram rather than
explicitly naming it. As the expression changes, the pointer points to different subprograms. The
following example illustrates how this can be useful.

10 SUB Xform(X(*))
20 Method$="Xform"&VAL$(RANK(X))
30 IF NOT INMEM(Method$) THEN LOADSUB Method$
40 CALL Method$ WITH(X(*))
50 DELSUB Method$
60 SUBEND

The CALL keyword must be used and the subprogram must be specified with the initial
character in uppercase and subsequent characters in lowercase. Subprogram pointers can also
be used in DELSUB, INMEM, LOADSUB and XREF statements.

Note: If you must write programs portable back to HP BASIC, don't use subprogram pointers in
DELSUB, LOADSUB, and XREF statements. Also, HTBasic allows string expressions to be used,
while HP BASIC is limited to a simple string variable.

See Also:
CSUB, DELSUB, LOADSUB, SUB

CAT
Displays a catalog of files or PROG file contexts.

Syntax: CAT [source] [TO destination] [; option [,option...]]

where: source = path-specifier | prog-file-specifier
destination = #device-selector | string-array$(*)
option = COUNT number of lines | EXTEND | NAMES | NO HEADER |
SELECT begin-characters | SKIP number-of-files
begin-characters = string expression

Sample: CAT
CAT "C:\WP";NO HEADER
CAT "A:" TO #701; SELECT "X",SKIP 1;COUNT Count
CAT "*.TXT"
View Sample:    CAT.BAS    (also found in examples directory)
Description:

Catalogs of Contexts in a PROG file
If a prog-file-specifier is given, a list of the contexts in that file are listed. The different context
types are main context, subprogram contexts, user defined function subprogram contexts and
CSUB contexts. Each context is listed with its name, size and type.

Catalogs of Files in a Directory

CAT is used to produce a catalog of files that are present in a directory of a mass storage
device. CAT can be used as a program command or statement. A header is printed and
information is given about each file. The format of the information depends on the file system.
However, when CAT is directed to a string array, it produces the SRM catalog format regardless
of the file type. The EXTEND option can be used to suppress the SRM format so that the string
array is written with the same format as would be displayed on the screen. The format for each
file system, including SRM, is given later in this entry.

If the file name is too long to give in the space provided by each of the following formats, an
asterisk, "*", will be printed in the last column of the file name field to indicate that the name
has been truncated. For ASCII and BDAT files, the number of records shown is the number of
records specified in the CREATE statement. This behavior was requested by customers for
compatibility with existing programs. The actual number of records may be more or less and can
be determined by examining STATUS register three of an I/O Path ASSIGNed to the file. Or the
file can be CREATEd with zero records; CAT then reports the actual number of records.

Short 8.3 File Format
The listing format for the DOS (FAT) file system is designed to be compatible with HP BASIC/DOS
(Viper). The format chosen by HP is very similar to the format used for the UNIX file system. This
is an example of output in DOS format:

DIRECTORY: C:\HTB
LABEL: DEMO
FORMAT: DOS
AVAILABLE BYTES: 34004992
 FILE NUMBER REC MODIFIED
FILE NAME TYPE RECORDS LEN DATE TIME PERMISSION
============ ===== ======== ===== ========= ===== ==========
HTB.KEY BDAT 2 256 10-Oct-98 14:00 RW-RW-RW-
HP-PCL.D86 BIN 1384 1 21-Nov-95 0:00 RW-RW-RW-
HTB.PIF DOS 545 1 24-Jul-00 11:12 RW-RW-RW-

The following information is given in the header. The number specifies the line number on which
the information is given:

1. Path specifier (volume specifier and full path name).
2. Volume label of the device.
3. The file system type, i.e. DOS or FAT.
4. Amount of free space on the device in bytes (NOT blocks).
5. Column headings for file information.
6. Column headings for file information.

Note that HP BASIC gives the free space in blocks, while HTBasic gives it in bytes. The file
information occurs in the following columns:

Column Information 
1-12 filename or directory name
14-18 file type, BDAT, DIR, PROG, etc.
20-27 number of records in the file
29-33 record length of each record
35-43 modification date in the form DD-MMM-YY
45-49 modification time in the form HH:MM

File Access Permissions
52 read access - An R is always present
53 write access - A W allows write
54 execute flag - An X means executable
55-60 File Access Permissions repeated

The file type is determined in the following manner: The file type is listed as DIR for a directory
and SYSTM if the file has the DOS System Attribute. If the file has an HTBasic file type header,
then the file type (BDAT, ASCII, PROG or BIN) found in the header is given. If the header can't be
read, then "LOCKD" is given. All other files are ordinary files and are listed with no file type or a
file type of "DOS". If a file has the DOS Hidden Attribute, then the file is not listed. The DOS
Archive Attribute is ignored.

See the note earlier explaining how the number of records is listed. DOS updates directory
entries only when a file is closed. Thus, the length of a file will not appear to change in a CAT as
the file is written.

The file permissions are listed as read, write and execute. To mimic UNIX, they are repeated
three times. The file permissions are determined in the following manner. The read access, "R",
is always set since DOS does not have a deny-read permission. The write access, "W" is set
unless the DOS Read-Only Attribute is set. The execute flag is set if the file extension is ".BAT",
".COM" or ".EXE" meaning the file can be executed from the DOS command prompt.

Long Filename Format
Under later versions of DOS, and Windows, some file systems allow long names with embedded
spaces. However, by default CAT still uses the FAT listing format, providing 8.3 compatible
filenames. To enable display and use of long filenames, use the statement

CONFIGURE LONGFILENAMES ON

With LONGFILENAMES ON, spaces are not deleted from directory and file specifiers since they
may be significant. It is roughly modeled after the NT DIR command. The listing format with
LONGFILENAMES ON is given below.

DIRECTORY: C:\PROGRAM FILES\HTBWIN
LABEL: MYDISK
FORMAT: NTFS
AVAILABLE BYTES: 54132736
FILE NUMBER REC MODIFIED
TYPE RECORDS LEN DATE TIME ATTRIB FILE NAME
===== ======== ===== ========= ===== ====== ========================
DIR 0 1 26-Apr-93 14:04 D Look at this file name
BDAT 2 256 10-Oct-89 14:00 A HTB.KEY
BIN 1888 1 30-Dec-95 13:37 A HP-PCL.DW6
 303967 1 25-Aug-00 10:06 A R Data
PROG 706 1 2-Jun-05 14:52 A AUTOST

Note that filenames are listed at the end. Standard DOS or NT file attributes are also presented.
The information in the header is the same as for the FAT file system. The file information is
presented in the following columns:

Column Information 
1-5 file type, BDAT, DIR, PROG, etc.
7-14 number of records in the file
16-20 record length of each record
22-30 modification date in the form DD-MMM-YY
32-36 modification time in the form HH:MM

File Attributes:
38 "A" if Archive Attribute set
39 "D" if Directory Attribute set
40 Always " "
41 "S" if System Attribute set
42 "H" if Hidden Attribute set
43 "R" if Read-only Attribute set
45- filename or directory name

Column 40 will always be blank, since files with the Hidden Attribute are not listed.

Long Year Format
The listing format for CAT may be changed to display a four-digit year. Using the command
CONFIGURE LONGCATDATES ON will display four digits for the year instead of two. To display
only two digits, use CONFIGURE LONGCATDATES OFF. These settings may also be set in the Run
Environment Dialog box. It is importaint to rember that when using the four-digit year to
dimension array length to accomidate the extra two characters. Typically this means
dimensioning the array to hold 62 rather than 60 characters when sending the CAT to an array.

SRM Format

When CAT is directed to a string array, it produces the SRM catalog format. The elements of the
array must be declared to contain at least 80 characters. If the array has more elements than
necessary, the extra elements are set to zero length. If the array doesn't have enough elements,
information about the additional files is thrown away and no error is reported.

The SRM listing format is compatible with HP BASIC, for compatibility with existing programs.
This is an example of output in SRM format:

DIRECTORY: C:\HTB
LABEL: DEMO
FORMAT: DOS
AVAILABLE BYTES: 33939456
 SYS FILE NUMBER RECORD MODIFIED PUB OPEN
FILE NAME LEV TYPE TYPE RECORDS LENGTH DATE TIME ACC STAT
================ === ==== ===== ======== ======== ================ === ====
HTB.KEY 1 HTB BDAT 2 256 10-Oct-89 14:00 MRW
HP_DATA 1 S300 BDAT 384 256 21-Nov-91 0:00 MRW
HTB.PIF 1 DOS 545 1 24-Jul-99 11:12 MRW

The following information is given in the header. The number specifies the line number on which
the information is given:

1. Path specifier.
2. Volume label of the device.
3. Name of the file system, not the catalog format, i.e. DOS, UNIX, etc.
4. Amount of free space on the device in bytes (NOT blocks).
5. Column headings for file information.
6. Column headings for file information.

Note that the path specifier is preceded by the word "DIRECTORY:". This is different from HP
BASIC. Also, line three gives the name of the file system, not the name of the listing format. In
line four, HP BASIC gives the free space in blocks, while HTBasic gives it in bytes. The file
information occurs in the following columns:

Column Information 
1-21 filename or directory name
23-25 level: always 1
27-30 system type: HTB, S300, S500 or blank
32-36 file type, BDAT, DIR, PROG, etc.
38-45 number of records in the file
47-54 record length of each record
56-64 modification date in the form DD-MMM-YY
67-71 modification time in the form HH:MM

File Access Permissions
73 Manager access - If an M is present then

anyone can read, write, PURGE
74 Read access - An R allows read
75 Write access - A W allows write
77-80 Open status, OPEN, LOCK, CORR or blank

See the notes earlier about file names and number of records. The Level is always listed as 1.
The system type specifies the kind of file header for typed files. If the file header is an HTB
header, the system type is "HTB". If the file header is an HP LIF header, the system type is
"S300" (or "S500" in the special case of Series 500 BDAT files). If the file is an ordinary file, the
system type column is blank, since the file has no header. File access permissions are mapped
into SRM permissions in a logical manner from the actual operating system permissions. In
general, the Open Status is undefined.

Selecting a sub-set of files to be displayed
There are three ways to select a subset of files in a directory to be displayed. The first method is
to use the SKIP option: specify that the first N files are not sent to the destination. The second
method is to use the SELECT option: specify in the SELECT string the beginning characters of
the files you wish listed, all files that don't begin with the selected characters are not displayed.

The last method of selecting files is to use wildcards. The media specifier, source, is expanded to

include a file name template including wildcards. See WILDCARDS for an explanation of how to
use wildcard characters. Wildcarding is always enabled for the CAT statement. WILDCARDS OFF
has no effect.

The following examples illustrate the last two methods of selecting files. Shown side-by-side are
examples which select the same sub-set of files to be displayed. The example on the left uses
the wildcard style of selection, while the example on the right uses the SELECT option.

Wildcard style SELECT style 
CAT "H*" CAT ;SELECT "H"
CAT "TEXT.*" CAT ;SELECT "TEXT."
CAT "A:R*" CAT "A:";SELECT "R"
CAT "\DOS\BASICA.C*" CAT "\DOS";SELECT "BASICA.C"

Do not use both these methods at once. If you wish to specify a wildcard, use the wildcard style.

The following are examples of commands which can only be done using the wildcard style.

CAT "*.BAS"! List only files with the .BAS extension
CAT "A?C" ! List files with 1st letter "A", any second
 ! letter and 3rd letter "C".

COUNTing the number of lines displayed
If the COUNT option is included, the variable is assigned the number of lines that was sent to
the destination. This can be especially useful when sending the output to a string array for later
processing. Except for PROG files, the count includes the header, files that are SKIPped, files
actually sent to the destination, files not sent to a string array because the array was too small
and the "AVAILABLE ENTRIES" line of a catalog of a PROG file.

Suppressing the header
If the NO HEADER option is included, then just the files are sent to the destination and COUNT
accounts for no header lines. For catalogs of a PROG file, the "AVAILABLE ENTRIES" line is also
suppressed.

Listing filenames only
If the NAMES option is included, then only filenames are listed. Both the header and other file
information is suppressed. If output is directed to a device, names are output in five columns. If
output is directed to a string array, output is one name per element. The CAT statement
executes considerably faster with this option.

See Also:

COPY, CREATE, CREATE ASCII, CREATE BDAT, MASS STORAGE IS, PERMIT, PROTECT, PURGE,
RENAME, SYSTEM$("MSI")

CAUSE ERROR
Simulates a specified error.

Syntax: CAUSE ERROR error-number

Sample: CAUSE ERROR Err
IF Testing THEN CAUSE ERROR 80
View Sample:    CAUSE ERROR.BAS    (also found in examples directory)
Description:

When the statement is executed, it is as though the error specified actually occurred and the
normal error related functions are affected: ERRL, ERRLN, ERRM$ and ERRN. CAUSE ERROR is
useful in debugging error handlers.

See Also:
CLEAR ERROR, ERRL, ERRLN, ERRM$, ERRN, ERROR RETURN, ERROR SUBEXIT, OFF ERROR, ON
ERROR

CHANGE
Finds and replaces strings.

Syntax: CHANGE old TO new [IN first-line [,last-line]] [;ALL]

where: old and new = string-literals
first-line and last-line = line-number | line-label

Sample: CHANGE "Apples" TO "Oranges" IN 1200,1500
CHANGE "Delete this sentence." TO ""
CHANGE "1988" TO "1989";ALL
CHANGE "unquoted" TO """quoted"""

Description:
The CHANGE statement is an editor command that allows you to search and replace character
sequences. The old and new string literals are used exactly as given with the case being
significant.

The CHANGE command from the HTBasic Windows Editor input line brings up the FIND window
and fills fields with old and new values. All other options are ignored.

If ALL is included in the CHANGE statement, then all changes are made automatically. If ALL is
not specified, the computer searches for each occurrence, replaces the item, displays the line
with the change and then asks you if you want this replacement. If you do, press ENTER; if you
don't, press CONTINUE. If you wish to abort the CHANGE statement, press any other function
key. When no further occurrences of the search string can be found a message "old not found" is
displayed.

CHANGE is not allowed while a program is running, but it may be used when the program is
paused. An error message will be displayed if a syntax error occurred during any CHANGE
operation. When the line is corrected the CHANGE command continues. The CHANGE operation
is aborted if a change exceeds the maximum allowable length of a program line or if a line
number is altered.

If first-line doesn't exist, the line immediately after that line number is used. If a non-existent
line label is specified, an error will be reported. If last-line is specified, searching will end with
that line. If the line doesn't exist, the line immediately before that line number is used. If a non-
existent line label is specified, an error will be reported. If last-line is not specified, searching will
end with the last line in the program. This command can only be executed from the keyboard. It
cannot be included in a program.

See Also:
COPYLINES, DEL, DELSUB, EDIT, FIND, INDENT, MOVELINES, REN, SECURE, XREF

CHECKREAD
Enables/disables verification of data sent to disk.

Syntax: CHECKREAD ON
CHECKREAD OFF

Sample: If Vital THEN CHECKREAD ON
CHECKREAD OFF

Description:
This command enables or disables verification of data sent to the mass storage media. If the
data that is written fails to verify correctly, an error is reported. CHECKREAD ON enables and
CHECKREAD OFF disables verification. The method of verification depends on the operating
system and hardware of your computer. If the operating system does not support verification,
this statement is ignored.

CHECKREAD is not supported by HTBasic and is ignored.

CHGRP
Sets the Group Ownership of a file.

Syntax: CHGRP group, file-specifier

where: group = numeric-expression rounded to an INTEGER

Sample: CHGRP 32,"/usr/users/Florece/file1"
CHGRP 0,"/etc/passwd"

Description:
On operating systems which support both group and individual ownership of a file, CHGRP
changes the group associated with a file. If the operating system does not support this call or if
you do not have the proper privilege to change the group, an error is returned when the
statement is executed. However, under any version of HTBasic, the editor will allow this
statement to be entered and the syntax checker will check it for correctness.

The FAT file does not support file ownership. CHGRP is not supported by HTBasic, executing this
statement will cause an error.

See Also:
CHOWN, CREATE, PERMIT, TIMEZONE IS

CHOWN
Sets the Individual Ownership of a file.

Syntax: CHOWN id, file-specifier

where: id = numeric-expression rounded to an INTEGER

Sample: CHOWN 512,"/usr/users/Sherry/file2"
CHOWN 0,"/dev/tty1"

Description:
On operating systems which support individual ownership of a file, CHOWN changes the
ownership of a file. If the operating system does not support this call or if you do not have the
proper privilege to change the ownership, an error is returned when the statement is executed.
However, under any version of HTBasic, the editor will allow this statement to be entered and
the syntax checker will check it for correctness.

The FAT file system does not support file ownership. CHOWN is not supported by HTBasic,
executing this statement will cause an error.

See Also:
CHGRP, CREATE, PERMIT, TIMEZONE IS

CHR$
 Creates ASCII character from decimal value.

Syntax: CHR$(numeric-expression)

Sample: Lf$=CHR$(10)
Lowr$=CHR$(NUM(Uppr$)+32)
A$=CHR$(65)
View Sample:    CHR$.BAS    (also found in examples directory)
Description:

The argument of the CHR$ function is a numeric expression which is rounded to an integer. A
value within the range 0 to 255 is then extracted from the integer by using the low-order byte of
the 16-bit word. The ASCII character which corresponds to this value is assigned to the specified
string variable. Only one character is assigned to the target string. An ASCII table is included in
Appendix B.

See Also:
NUM

CHRX
Returns the width of a character cell.

Syntax: CHRX

Sample: X1=CHRX
ALLOCATE INTEGER Charcell(1:CHRY,1:CHRX)
PRINT “Your Characters are “:CHRX&” Wide”
View Sample:    CHRX.BAS    (also found in examples directory)
Description:

If your computer display supports multiple display modes or fonts having different character
widths, the value returned by CHRX is the width for the current display mode.

See Also:
CHRY, SET CHR

CHRY
Returns the height of a character cell.

Syntax: CHRY

Sample: CHRY
ALLOCATE INTEGER Charcell(1:CHRY,1:CHRX)
PRINT “Your Characters are “:CHRY&” High”
View Sample:    CHRY.BAS    (also found in examples directory)
Description:

If your computer display supports multiple display modes or fonts having different character
heights, the value returned by CHRY is the height for the current display mode.

See Also:
CHRX, SET CHR

CINT
Converts a value to INTEGER.

Syntax: CINT (numeric-expression)

Sample: OUTPUT @I;CINT(X*1.1)
View Sample:    CINT.BAS    (also found in examples directory)
Description:

The CINT function is useful for forcing the type of a variable or value to INTEGER. For example,
suppose you are writing binary integers to a file and one value must be multiplied by 1.1 before
being written. X*1.1 gives a REAL result, which outputs eight bytes to the file. Even INT(X*1.1)
gives a REAL. CINT(X*1.1) forces the value to be INTEGER and two bytes are written to the file.

Notice the differences among CINT, FIX and INT. CINT converts a REAL value to an INTEGER
value by substituting the closest INTEGER to the value. FIX returns the closest integral value
between the REAL value and zero. INT returns the closest integral value between the REAL value
and negative infinity. Also, CINT actually changes the type from REAL to INTEGER while INT and
FIX return integral results without changing the type. The following table helps illustrate these
differences:

Value x CINT(x) FIX(x) INT(x)
2.6 3 2.0 2.0
2.2 2 2.0 2.0
-2.2 -2 -2.0 -3.0
-2.6 -3 -2.0 -3.0

Porting to HP BASIC:
CINT is a new HTBasic function that is not available in HP BASIC. It should not be used in
programs that must be ported back to HP BASIC.

See Also:
DROUND, FIX, FRACT, INT, PROUND, REAL

CLEAR
Sends an IEEE-488 bus Device Clear.

Syntax: CLEAR { device-selector | @io-path }

Sample: CLEAR 7
CLEAR 701
CLEAR Adevice
CLEAR @Path
Description:

CLEAR causes the active controller to send a Device Clear to one or more devices. The effect on
the device is device-dependent. If the computer is not the active controller, an error is
generated. If primary addressing is specified the bus action is: ATN, MTA, UNL, LAG, SDC. If only
an interface select code is specified the bus action is: ATN, DCL.

See Also:
ABORT , LOCAL, PASS CONTROL, PPOLL, REMOTE, REQUEST, SEND, SPOLL, TRIGGER

CLEAR ERROR
Resets all error indicators.

Syntax: CLEAR ERROR

Sample: CLEAR ERROR
IF Finish THEN CLEAR ERROR
View Sample:    CLEAR ERROR.BAS    (also found in examples directory)
Description:

CLEAR ERROR resets ERRL, ERRLN, ERRM$ and ERRN to their default start-up values.

See Also:
CAUSE ERROR, ERRL, ERRLN, ERRM$, ERRN, ERROR RETURN, ERROR SUBEXIT, OFF ERROR, ON
ERROR

CLEAR LINE
Clears the keyboard input line.

Syntax:
CLEAR LINE

Sample: IF Signal THEN CLEAR LINE
View Sample:    CLEAR LINE.BAS    (also found in examples directory)
Description:

This command is equivalent to pressing the CLR LN key and replaces the non-intuitive
command: OUTPUT KBD;CHR$(255)&"#";.

See Also:
CLEAR SCREEN

CLEAR SCREEN
Clears the ALPHA display.

Syntax: CLEAR SCREEN
CLS

Sample: IF Ready THEN CLEAR SCREEN
View Sample:    CLEAR SCREEN.BAS    (also found in examples directory)
Description:

CLS is an abbreviated form of CLEAR SCREEN. This command is equivalent to pressing the CLR
SCR key and replaces the non-intuitive command: OUTPUTKBD;CHR$(255)&"K";.

On bit mapped displays with MERGE ALPHA WITH GRAPHICS in effect, this command will also
clear the graphic screen.

See Also:
CLEAR LINE

CLIP
Changes the clipping rectangle.

Syntax: CLIP left,right,bottom,top
CLIP ON
CLIP OFF

Sample: CLIP 10,20,5,25
View Sample:    CLIP.BAS    (also found in examples directory)
Description:

CLIP changes the clipping rectangle. Lines, areas and labels are clipped so that portions outside
the clipping rectangle are not displayed. The PLOTTER IS statement sets the clipping rectangle
to the hard-clip limits (which are the user specified values or the maximum allowed by the
device or page size). The VIEWPORT statement sets the clipping rectangle to the edge of the
VIEWPORT.

When values are specified with the CLIP statement, the clipping rectangle is set to the values
specified. The units used are WINDOW (or SHOW) units, not VIEWPORT units.

The CLIP OFF statement sets the clipping rectangle back to the hard-clip limits. The CLIP ON
statement restores the clipping rectangle to the last clipping rectangle set up by CLIP or
VIEWPORT. If no CLIP or VIEWPORT has been executed, CLIP ON sets the clipping rectangle to
the hard-clip limits.

Execute CLIP to add labels, comments, graphics or any other plotting that is to be done outside
the VIEWPORT (assuming the VIEWPORT is less than the hard-clip limits).

See Also:
CLEAR SCREEN, DRAW, MOVE, PLOT, POLYGON, POLYLINE, SHOW, VIEWPORT, WINDOW

CLS

See CLEAR SCREEN.
CLEAR SCREEN

CMPLX
Combines real and imaginary parts to return a complex number.

Syntax: CMPLX(numeric-expression, numeric-expression)

Sample: PRINT Z*CMPLX(0,1)
Z=CMPLX(X,Y)
View Sample:    CMPLX.BAS    (also found in examples directory)
Description:

This function allows a complex number to be assembled from two numeric expressions. The first
expression specifies the real part and the second specifies the imaginary part. This function also
allows complex constants, such as CMPLX(PI,6.7), to be expressed in a program.

To assemble a complex number from magnitude and angle rather than real and imaginary parts,
use this method:

Z = CMPLX(Magnitude*COS(Angle), Magnitude*SIN(Angle))

If a complex number is used as an argument to CMPLX, then only the real part of the argument
is used. For example, CMPLX(CMPLX(1,2), CMPLX(3,4)) is equal to CMPLX(1,3).

See Also:
ABS, ARG, CONJG, IMAG, REAL

COLOR
Defines and selects the color for graphics.

Syntax: AREA COLOR h, s, l
AREA INTENSITY r, g, b
AREA PEN pen-number
PEN pen-number
SET PEN pen-number COLOR h, s, l
SET PEN pen-number COLOR numeric-array(*)
SET PEN pen-number INTENSITY r, g, b
SET PEN pen-number INTENSITY numeric-array(*)

where: h,s,l, r,g,b = each is a numeric-expression in the range zero to one.
pen-number = see below.

Sample: SET PEN 1 COLOR H,S,L
AREA INTENSITY R,G,B
AREA PEN 2
SET PEN Num COLOR H,S,L
PEN 1

View Sample:    COLOR.BAS    (also found in examples directory)

Description:
Specifying a Color using the HSL system
Use the keyword COLOR to specify a color in the HSL (Hue, Saturation, Lightness) color space.
The HSL color space is designed to be intuitive and follows the model of mixing paints. An artist
preparing a color for a painting first selects a hue (pure color pigment). He may then add black
or white paint to arrive at the desired color. Adding white serves to wash out the color. In
scientific terms, we say this affects the "saturation" of the color. The artist may then adjust the
brightness by adding black paint. This affects the amount of light reflected by the pigment. We
call this the luminosity.

Saturation ranges from zero (white) to one (pure color - no added white). Luminosity ranges
from zero (black) to one (pure color - no added black). Hue ranges from zero to one. The
following table gives an indication of where several colors occur in that range:

Hue Value
Red .000
Yellow .167
Green .333
Cyan .500
Blue .667
Magenta .833
Red 1.00

Specifying a Color using the RGB system
Use the keyword INTENSITY to specify a color using the RGB (Red, Green, Blue) color space.
The RGB color space is designed to match the way in which our eyes work and in turn, the way
in which television and computer displays are designed. The display has three color guns: Red,
Green and Blue. By specifying a number in the range zero (corresponding to zero intensity) to
one (corresponding to maximum intensity) for each of the three guns, you can uniquely define
all the colors which can be produced by that display.

Pen Numbers
A computer display system is limited in the number of different colors it can display at the same
time. If N is the number of different colors which can be displayed simultaneously, then legal
pen numbers are the integers 0 to N-1.

Drawing Mode Table
The writing mode of the pen is specified by the current drawing mode and the sign of the pen

number. GESCAPECRT,4 is used to change to normal drawing mode. GESCAPECRT,5 is used to
change to alternate drawing mode. The following table defines the different writing modes
available. P is a positive pen number, X is the present value of a pixel.

GESCAPE CRT,4 GESCAPE CRT,5
Statement Normal Alternate                               
PEN P P BINIOR(X,P)
AREA PEN P P BINIOR(X,P)
PEN 0 BINCMP(X)* 0
AREA PEN 0 0 0
PEN -P BINAND(X,BINCMP(P)) BINEOR(X,P)
AREA PEN -P BINAND(X,BINCMP(P)) BINAND(X,BINCMP(P))

*PEN 0 in Normal Drawing Mode will do BINCMP(X) in non-color map mode and 0 in COLOR MAP
mode.

Pen Numbers
The SET PEN statement explains pen color assignments. The following table gives the default
color to pen assignments.

PEN COLOR
0 black
1 white
2 red
3 yellow
4 green
5 cyan
6 blue
7 magenta
8 black
9 olive green
10 aqua
11 royal blue
12 maroon
13 brick red
14 orange
15 brown

See Also:
AREA, GESCAPE, PLOTTER IS, PEN, SET PEN

COM
Defines global variables.

Syntax: COM [/ com-block-name /] item [,item...]

where: item = [type] numeric-name [{(bounds)|(*)} [BUFFER]] |
string-name$ [[length]] [BUFFER] |
string-name$ { (bounds) [[length]] | (*) } |
@io-path
type = {REAL | INTEGER | COMPLEX}
bounds = [lower-bound :] upper-bound [,bounds...]
upper bound, lower bound and length = integer constants

Sample: COM P1,Fft$[1024] BUFFER

COM INTEGER I(5),REAL Array(-365:364)
COM /Block/ Name$,@Source,INTEGER Cross(*)
View Sample:    COM.BAS    (also found in examples directory)

Description:
COM allocates a block of memory where variables can be held in "common" between one or
more program contexts. Any subprogram or main context can access a "common" variable by
including a COM statement which references the correct block of memory. One unnamed COM
block is provided. To reference it, leave off the block name. The unnamed COM block must be
declared in the main context. All other COM blocks are referenced by name. The name is global
to all contexts.

Declaring a COM block
A COM block may contain so many variables that it takes several lines to declare them all. As
long as all the COM statements are in the same context and all reference the same block name
(or all have no block name), it is completely legal to divide the COM block declaration onto
several lines. The following is an example:

COM /Block1/ Var1,Var2
COM /Block1/ Var3,Var4

Furthermore, the statements don't have to be next to each other. In fact, statements declaring
two or more COM blocks can be intermixed. The COM statements must preceed any OPTION
BASE statement that is present.

Parameters are not allowed in COM statements. Numeric variables are considered REAL until an
INTEGER declaration is seen. Variables are then considered INTEGER until a REAL, I/O path or
string is declared. String variables must have their length declared when declared in a COM
block. Buffer variables are declared by specifying BUFFER after each variable's name. BUFFER
variables are used with the TRANSFER statement.

The maximum number of array dimensions is six and the lower bound must be less than or
equal to the upper bound value. In the first context that an array or string is declared, the COM
statement must explicitly specify array subscript bounds and string lengths. In subsequent
contexts, COM statements need only specify the string name or the array name with a full array
specifier "(*)".

Matching COM blocks
The COM blocks in each context must match. In a given COM block, the individual variable
names do not have to match, but the number of variables and their type must agree. The
boundaries of arrays do not have to be the same, but the RANK (number of dimensions) and the
SIZE must match.

Creation and Deletion of COM blocks
COM variables have a different lifetime than normal variables. When a COM block is created,
the variables are all initialized to zero (or zero length strings). The variables then exist and retain
values assigned to them until the COM block is deleted.

A COM block is initially created when a program context is "prerun" and the context declares a
COM block that does not already exist. A prerun will be done when you:

Press RUN or STEP when no program is running
Execute the RUN command when no program is running
Execute GET or LOAD from a program
Execute GET or LOAD command that begins program execution

During prerun, if a COM block is declared which already exists, the new and old declarations are
compared for compatibility. If they are found to be compatible, then the COM block is left
untouched and the variables retain their previous values. If they are found to be incompatible
then an error is returned. If a REDIM can make arrays compatible, then the arrays will be
REDIMed. A COM block exists until a SCRATCH A or SCRATCH C deletes it. Even if you delete the
program which refers to a COM block, it remains in memory until a SCRATCH A or C is executed.

When you LOAD a new program, all COM blocks in memory will be checked against the COM
blocks defined in the new program and any unreferenced COM blocks will be deleted.

See Also:
ALLOCATE, DIM, INTEGER, OPTION BASE, REAL, REDIM, TRANSFER

COMMAND$
Returns a copy of the command line.

Syntax: COMMAND$

Sample: PRINT "Switches: "&COMMAND$
C$[4;10]=LWC$(COMMAND$)
View Sample:    COMMAND$.BAS    (also found in examples directory)
Description:

The COMMAND$ function returns the command line used to start HTBasic, including any
command line options specified.

HTBasic returns the entire command line. This is useful if symbolic links are made to the HTBasic
executable and the AUTOST program wishes to react differently depending on the name used to
start HTBasic.

Porting to HP BASIC:
COMMAND$ is a new HTBasic function that is not available in HP BASIC. It should not be used
in programs that must be ported back to HP BASIC.

See Also:
ENVIRON$, EXECUTE, SYSTEM$

COMPLEX
Reserves storage for complex variables and arrays.

Syntax: COMPLEX variable [,variable...]

where: variable = numeric-name [(bounds) [BUFFER]]
bounds = [lower-bound :] upper-bound [,bounds]
lower/upper-bound = integer constant in the range -32768 to 32767.

Sample: COMPLEX Z, C(-10:10,4)
COMPLEX Tx(512) BUFFER
View Sample:    COMPLEX.BAS    (also found in examples directory)
Description:

COMPLEX declares, dimensions and reserves memory for complex variables and arrays.
COMPLEX variables use sixteen bytes of storage space. An array's maximum dimension is six
and each dimension can hold a maximum of 32,767 elements. If a lower bound is not specified,
the default is the OPTION BASE value (0 or 1). A COMPLEX variable may be declared a buffer by
specifying BUFFER after the variable name. Buffer variables are used with the TRANSFER
statement.

See Also:
ALLOCATE, COM, DEF FN, DIM, INTEGER, REAL, SUB, TRANSFER

CONFIGURE BDAT
Specifies the byte order for CREATE BDAT.

Syntax: CONFIGURE BDAT {MSB | LSB} FIRST

Sample: CONFIGURE BDAT MSB FIRST
CONFIGURE BDAT LSB FIRST
View Sample:    CONFIGURE BDAT.BAS    (also found in examples directory)
Description:

CONFIGURE BDAT specifies the byte ordering to use with each BDAT file created after this
statement is executed. By default, BDAT files are created with the same byte order as the
computer. The IBM PC and compatibles use LSB FIRST. The Sun SPARCstation and HP Series
700 use MSB FIRST. Since HP BASIC can only use MSB FIRST files, if you wish to CREATE BDAT
files on a PC which can be used by an HP BASIC workstation, you must use CONFIGURE BDAT
MSB FIRST before creating the files. HPCOPY will print a warning when it copies any BDAT file
with LSB FIRST byte ordering.

BDAT files created with HP file headers are always created MSB FIRST, regardless of the setting
of this statement. See CONFIGURE CREATE.

See Also:
CONFIGURE CREATE, CONFIGURE SAVE, CREATE BDAT

CONFIGURE CREATE
Specifies the kind of file header used with typed files.

Syntax: CONFIGURE CREATE {"HP" | "HTB"}

Sample: CONFIGURE CREATE "HP"
CONFIGURE CREATE "HTB"
View Sample:    CONFIGURE CREATE.BAS    (also found in examples directory)
Description:

CONFIGURE CREATE specifies the kind of file header to use when creating a LIF ASCII or BDAT
file. By default, HTBasic creates "HTB" file headers, since they are two or three times smaller
than HP LIF headers. BDAT files with HTB headers can also be created with data in either LSB or
MSB byte ordering (see CONFIGURE BDAT). File operations are much faster when the byte
ordering of the file matches the byte ordering of the computer. Files with HTB file headers, when
copied with HPCOPY, are completely compatible with HP BASIC.

Use CONFIGURE CREATE "HP" if you wish to create data files that are simultaneously accessed
over a network by HTBasic and HP BASIC. Files with HP LIF headers can also be "binary" copied
among DOS or UNIX media for access by the HP Language Coprocessor (Viper card), HP BASIC
and HP BASIC/UX.

HTBasic can always use files with either header, regardless of the setting of CONFIGURE
CREATE. The setting affects file creation only. A CAT listing in SRM format shows the kind of file
header of each file in the System Type column.

See Also:
CONFIGURE BDAT, CONFIGURE SAVE, CREATE BDAT

CONFIGURE DIM
Turns implicit variable dimensioning on or off.

Syntax: CONFIGURE DIM { ON | OFF }

Sample: CONFIGURE DIM ON
CONFIGURE DIM OFF
View Sample:    CONFIGURE DIM.BAS    (also found in examples directory)
Description:

CONFIGURE DIM turns implicit variable and string dimensioning on or off. By default it is on
and if a variable is never declared, it is assumed to be REAL. If a string is never declared, it is
assumed to have a maximum length of 18. If an array is never declared, it is implicitly declared
having the number of subscripts found in its first occurrence, with each dimension having the
default OPTION BASE lower bound and an upper bound of ten.

When CONFIGURE DIM is OFF, then each variable, string and array must be explicitly declared
using REAL, INTEGER, LONG, COMPLEX, and DIM statements.

During prerun, any undeclared variables generate an error message that is written to the
message line. To see all these error messages turn PRINTALL IS on during prerun. If a program
has already been prerun, CONFIGURE DIM OFF will not report any undeclared variables until
another prerun occurs. To force a prerun to occur, change a program line and press the STEP
key.

While most structured programming languages force explicit variable declaration, traditional
BASIC has always allowed implicit declarations. For example, in the program:

20 Xyz=1
30 PRINT Xy
40 END

the variables Xyz and Xy are used without declaration. Many advocates of structured
programming, however, feel that explicit variable declaration is preferable. Suppose that "Xy" in
line 30 is a typographical error that should have been "Xyz." This type of program error is
extremely difficult to find and correct in a large program. With CONFIGURE DIM OFF, the
above program would require an additional line:

10 REAL Xyz

and the "Xy" in line 30 would be flagged as an error when you attempted to run the program.

See Also:
COMPLEX, DIM, INTEGER, OPTION BASE, REAL, LONG

CONFIGURE DUMP
Specifies the graphic printer language for DUMP.

Syntax: CONFIGURE DUMP TO language

where: language = string expression naming the printer language
and driver options

Sample: CONFIGURE DUMP TO "PCL"
View Sample:    CONFIGURE DUMP.BAS    (also found in examples directory)
Description:

CONFIGURE DUMP specifies what graphic printer language the DUMP statement uses. The
language string expression specifies the name of a driver. When CONFIGURE DUMP is
specified, dumps are directed to that driver. It is recommended that CONFIGURE DUMP
statements be included in your AUTOST file to load any necessary drivers.

The following information is for reference only. See the Installing and Using manual for more
specific information. The following table lists the drivers available at the time of this manual
printing.

Name For these printers 
PCL Advanced HP-PCL driver
PS-DUMP Postscript printers, devices and files
GIF Graphic Interchange Format files
WIN-DUMP Send the dump to the default Windows printer

As an example, if you wish to use an HP LaserJet III for screen dumps on ISC 26, use the
following command to change to the HP printer control language:

DUMP DEVICE IS 26
CONFIGURE DUMP TO "PCL"

If a DUMP is made before doing a CONFIGURE DUMP, HTBasic automatically loads and uses
the WIN-DUMP driver.

Number of Colors
The number of colors in the DUMP depends on both the dump driver and the display driver. All
dump drivers support black and white dumps. Some dump drivers can also handle 16 or 256
colors. The same is true of display drivers. If both the display and dump drivers support 256
colors, the dump is made in 256 colors. Otherwise if both support 16 colors, the dump is made in
16 colors. Otherwise, the dump is made in black and white.

Options
It is sometimes necessary to specify options to the drivers. Options are included by appending a
semicolon to the driver name, followed by the options. The following specific driver sections
contain more details on these options.

PCL Driver
The PCL dump driver provides support for devices and software that accept the Hewlett-Packard
PCL printer language. The driver supports both DUMP ALPHA and DUMP GRAPHICS from
bitmapped displays.

The PCL driver is loaded with a line like

CONFIGURE DUMP TO "PCL[;options]"

Options
The options are listed after the semicolon in the driver name, within the quotes. If more than
one option is specified, the option names are separated by commas. When no options are given,
output from the PCL driver is the same as the HP-PCL driver. The options are as follows:

ADJUST.    Certain display adapters common in the PC environment use pixels that have
different sizes in the horizontal and vertical directions. All pixels are considered to be square and
the dump is made using the aspect ratio of the window running HTBasic.

BW.    This option tells the printer to dump using white for the areas on the screen that were
drawn using PEN 0 and black for the areas drawn with any other PEN. This option is the default;
it need not be specified explicitly.

COLOR, CCMY, C16, and C256.    These options cause the dump to be done in color to a color
printer. The COLOR option uses the printer's default 8-color solid-color palette (black, white, red,
green, blue, cyan, magenta, and yellow), mapping each color on the screen to the closest one
from the palette. COLOR uses the default RGB palette to dump the screen; CCMY uses the
default CMY palette. The C16 and C256 options use a 16- or 256-color palette on the printer, and
only work with printers that have settable color palettes such as the PaintJet series and the
DeskJet 1200C. With printers that use dithering to print mixed colors, you may have to specify a
coarser resolution than the printer is capable of in order to enable the dithering; for example, on
the original PaintJet printer, C16 and DPI90 together are needed to produce dithering; C16 and
DPI180 cause the printer to use only the 8 default colors when printing.

Printing using the COLOR and CCMY options swaps black and white colors when printing, unless
the INVERT option is also used.

When using the solid-color palette with older PaintJet printers, the COLOR option should be used,
as these printers do not support the CMY color model. The DeskJet 500C and 550C models can
only generate color screen dumps with the CCMY option.

COMPRESS.    The COMPRESS option specifies that the printer being used can do "packbits"-
style data compression. If this option is specified, the screen dump is transmitted to the printer
using fewer data bytes. The COMPRESS option can be used with all the LaserJet IIP and IIP+
printers, all LaserJet III and IV series printers, all DeskJet series printers, the PaintJet XL300
printer (but not the older PaintJets), and the DesignJet printers, as well as other brands of
printers that emulate these. Note, however, that the printers with slower CPU's will print 2-4
times slower when printing compressed data, so COMPRESS may not be a good option to use
with these printers.

DPInnn.    This option tells the driver to use nnn dots per inch when dumping graphics. Without
this option, the printer's default resolution is used. This option is required for the GRAY option,
explained below, and for the ADJUST option (available only with PC versions of the driver). The
resolution specified must be one acceptable by the printer's Raster Graphics Resolution
command. For most newer devices, DPI75, DPI100, DPI150, and DPI300 are the legal values for
this option. Some older printers, like the Hewlett-Packard ThinkJet, don't support this option.

With the COLOR and BW options, this option controls the size of the dump, by mapping each
pixel on the screen to one of the specified-sized dots on the printer; with the GRAY option, this
options controls the size of the sub-pixels used to create the printed image, as explained in the
GRAY option section. On the PC, this option also sets the size of the sub-pixels used to print the
image when the ADJUST option is used, as explained in the ADJUST option section.

GRAY.    The GRAY option causes the driver to consult the screen's color map and calculate a
gray shade for each color using the NTSC grayscale equation. Screen dumps are produced using
the resulting shades of gray. If the INVERT option is not also specified, white and black are
reversed after the gray shade is calculated, so that lighter colors on the screen become darker
colors on the printer.

When dumps are made using this option, the driver calculates the number of printer pixels, as
specified in the DPInnn option, required to print a single screen pixel to make a 9 x 6 3/4 inch
(23 x 17 mm) plot, up to 4 x 4 printer pixels per screen pixel. The driver sets the appropriate
number of printer pixels to black to represent the gray shade of the corresponding screen pixel.

The NTSC grayscale equation is

brightness = 11% blue + 59% green + 30% red

The GRAY option is ignored unless the DPInnn option is also specified.

INVERT.    By default, the driver makes images with black and white exchanged from the values
used on the screen. If the GRAY option is used, the driver by default reverses the gray level of all
pixels dumped from that seen on the display. This is often suitable for output to a printer, where
printing is done with colored inks on white paper, but may not be suitable for film output
devices, where an exact image of the screen is wanted. The INVERT option causes the colors or
gray levels to be dumped exactly as they are on the screen.

RELATIVE.    Normally, the driver begins each dump at the left margin. The RELATIVE option
causes the driver to begin each dump at the printers current print position.

EJECT.    Normally, the driver ejects the page after a dump is finished. The EJECT option is no
longer supported. Use CONTROL ISC,113;0 to disable the auto-eject, and CONTROL ISC,113;1 to
re-enable it.

APPEND
If the APPEND keyword is used with the DUMP DEVICE IS command and if the dump device is a
file, the driver appends dumps to the file, separated by form feeds.

ALPHA Dumps
The DUMP ALPHA command from a PC text screen produces a dump at the top of a US "A" or
European A4 sized sheet of paper. The attributes of text on the screen, such as the reversed
colors on the key labels, are lost in this mode.

Note that DUMP ALPHA from bitmapped screens on the PC dumps the text on the screen as
graphics, and attributes are preserved in the dump.

If the APPEND keyword is used, subsequent DUMP ALPHA commands produce similar dumps,
each on a separate sheet of paper.

PS-DUMP Driver
The PostScript dump driver provides support for devices and software that accept the PostScript
graphics language. It provides support for both the DUMP ALPHA and DUMP GRAPHICS
commands. The PostScript dump driver produces a screen image intended to be rendered on a
US "A" size or European A4 size page. It scales the image so that its longest dimension fits in the
shortest dimension of the paper with an adequate margin. When the EXPANDED keyword is used
on the DUMP DEVICE IS statement, screen dumps change from their normal portrait orientation
to landscape orientation.

The PostScript dump driver is loaded with the following statement:

CONFIGURE DUMP TO "PS-DUMP[;options]"

Options
The options are listed after the semicolon in the driver name, within the quotes. If more than
one option is specified, the option names are separated by commas. The GREY and COLOR
options are ignored in ALPHA dumps. The options are as follows:

BW.    This option causes the driver to dump using the paper color for the areas on the screen
that were drawn using pen 0 and the ink color (usually black) for the areas on the screen drawn
with any other pen. This is reversed if the INVERT option is also used. The BW option need not be
specified explicitly; it is the default.

GRAY.    This option causes the driver to render colors on the computer screen as shades of gray
on the printer. Each shade of gray is calculated using the NTSC grayscale equation:

brightness = 11% blue + 59% green + 30% red

Unless the INVERT option is used, the resulting brightness is inverted before printing, so that
dark colors on the computer screen print as light colors and vice-versa.

COLOR.    The COLOR option causes the driver to output a color image of the screen. The
resulting PostScript screen image can only be rendered on a device that supports Level 2
PostScript or the color extensions of Level 1.

INVERT.    By default, the driver makes images with black and white exchanged from the values
used on the screen. If the GRAY option is used, the driver by default reverses the gray level of all
pixels dumped from that seen on the display. This is often suitable for output to a printer, where
printing is done with colored inks on white paper, but may not be suitable for film output
devices, where an exact image of the screen is wanted. The INVERT option causes the colors or
gray levels to be dumped exactly as they are on the screen.

ADJUST.    Certain display adapters common in the PC environment use pixels that have
different sizes in the horizontal and vertical directions. Without the ADJUST option, the driver
dumps from these adapters using square pixels. This may result in an image that is too wide for
its height. The ADJUST option forces the image to have a 4:3 aspect ratio regardless of its pixel
size.

The APPEND Keyword
If the APPEND keyword is used in the DUMP DEVICE IS statement, the dump driver appends all
dump images after the first one to the existing file as new pages. The driver inserts "%%Page"
comments, used by some print spooling software, into the file at the beginning of each page. If
the dumps are done in separate HTBasic sessions, the driver doesn't know which page it is on,
so it starts over with page 1. This may be a problem with some spooling software. Also note that
only one page can be present in a file that will be imported into a word processor document.

GIF Driver
The GIF dump driver provides support for software that accepts CompuServe Graphics
Interchange Format (GIF) files. The DUMP ALPHA command dumps the alpha planes in graphics
mode and the DUMP GRAPHICS command dumps the graphics planes.

When the EXPANDED keyword is used on the DUMP DEVICE IS statement, graphics screen
dumps are rotated 90 degrees clockwise from their normal orientation.

The GIF dump driver is loaded with the following statement:

CONFIGURE DUMP TO "GIF[;options]"

Options
The options are listed after the semicolon in the driver name, within the quotes. If more than
one option is specified, the option names are separated by commas. The BW option is ignored in
ALPHA dumps. The options are as follows:

BW.    The driver normally produces a 16- or 256-color screen dump when used with a color
screen. The BW option causes the driver to produce a black-and-white screen dump with color
screens. In this dump, pixels of color zero are dumped as black and pixels of any other color are
dumped as white. (This is reversed if the INVERT option is also specified.)

INVERT.    The driver normally dumps an image in the colors shown on the screen. The INVERT
option causes the driver to reverse black and white in the dump. All other colors are unchanged.

The APPEND Keyword
If the APPEND keyword is used in the DUMP DEVICE IS statement, the GIF dump driver appends
all dump images after the first one to the existing file. Note, however, that the screen type and
colormap are stored when the first image is dumped. If the screen type or colormap changes,
the dump images after the first one will not be correct. Also note that most software that uses
the GIF format cannot process multiple images in one file.

WIN-DUMP Driver
The WIN-DUMP dump driver provides support for any printer supported by Windows that accepts
bitmaps. The command to load the WIN-DUMP dump driver is:

CONFIGURE DUMP TO "WIN-DUMP[;options]"

If a DUMP is made before doing a CONFIGURE DUMP, HTBasic automatically loads and uses the
WIN-DUMP driver.

Print Manager
The default interface select code (ISC) for DUMP DEVICE IS is 10, the WIN-PRINT interface. The
WIN-DUMP driver can send dumps to any ISC that is assigned to a WIN-PRINT printer via Device
Setup. If you change the DUMP DEVICE to any other interface, error 150 occurs when a DUMP is
attempted. To send screen dumps to another interface, such as an IEEE-488 printer, use a
different dump driver.

Because Windows is a multitasking environment in which several programs may try to print at
once, Print Manager collects printer output into "jobs." Only when a job is done is it printed.
Normally, the WIN-DUMP driver prints a single dump per print job. To mix text and screen dumps
or multiple screen dumps on a single page, output some text to the page before doing the
dump. For example,

10 CONTROL 10,113;0 ! set DUMP auto eject to off
20 ASSIGN @I TO 10
30 OUTPUT @I;"This is a screen dump:"
40 OUTPUT @I
50 DUMP GRAPHICS
60 ASSIGN @I TO *
70 END

The various settings, such as margins and line height, made in the WIN-PRINT driver are honored
by the WIN-DUMP driver. See the WIN-PRINT driver documentation in the Installing and Using
Manual for more information.

The EXPANDED keyword in the DUMP statement is ignored. The DUMP is made in landscape or
portrait mode depending on the printer settings, as explained in the Installing and Using Manual.

DUMP Size
By default, the screen image is scaled until it fills 100% of the width between the left and right
margins. The size can be changed using GESCAPE code 39. This example sets the scaling to 20%
of the width between the margins:

10 INTEGER S(1:1)
20 S(1)=20
30 GESCAPE CRT,39,S(*)
40 END

INVERT Option
By default, the driver inverts all colors in the image. Black and white are exchanged as well as
other colors. This is often suitable for output to a black and white printer, where printing is done
with black ink on white paper, but may not be suitable for color output devices, where an exact
image of the screen is wanted. The INVERT option causes the colors or gray levels to be dumped
exactly as they are on the screen.

Graphics Buffering
The DUMP statement is affected by graphics buffering. When graphics buffering is off, parts of a
window that are obscured or off the edge of the screen are not dumped correctly. If the window
is minimized, a dump of the icon is returned. When graphics buffering is on, the window is
correctly dumped in all cases.

See Also:
DUMP, DUMP DEVICE IS

CONFIGURE KBD
Defines keyboard mappings for character sets.

Syntax: CONFIGURE KBD first-char TO string-name$

where: first-char = numeric-expression rounded to an integer.

Sample: CONFIGURE KBD 129 TO Mapping$
View Sample:    CONFIGURE KBD.BAS    (also found in examples directory)
Description:

CONFIGURE KBD defines keyboard mappings for character sets not supported by your
operating system. When in effect, CONFIGURE KBD substitutes characters from the given
string in place of characters that come from the keyboard. This remapping is good for ASCII
characters, but does not apply to function keys. (Use CONFIGURE KEY to redefine function keys.)
CONFIGURE KBD is not intended to be a complete keyboard driver, it merely substitutes one
ASCII value for another. The range of ASCII values which are remapped starts at first-char and
extends to (first-char - LEN(string-name$) - 1). The string specifies the ASCII values which should
be substituted for values in that range.

For example, if the keyboard is producing characters from the PC Code Page 850 character set,
but the display has been set up to display the HP Roman-8 character set, the following program
will cause characters from the keyboard to be translated to the display character set so that
characters are displayed with the same glyphs as printed on the keyboard. If the keyboard is
used to produce a character not in the HP Roman-8 character set, it is translated to CHR$(252),
a solid block.

10 !setkbd2.bas
20 DATA 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
30 DATA 16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31
40 DATA 32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47
50 DATA 48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63
60 DATA 64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79
70 DATA 80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95
80 DATA 96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111
90 DATA 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127
100 DATA 180,207,197,192,204,200,212,181,193,205,201,221,209,217,216,208
110 DATA 220,215,211,194,206,202,195,203,239,218,219,214,187,210,252,190
120 DATA 196,213,198,199,183,182,249,250,185,252,252,248,247,184,251,253
130 DATA 252,252,252,252,252,224,162,161,252,252,252,252,252,191,188,252
140 DATA 252,252,252,252,252,252,226,225,252,252,252,252,252,252,252,186
150 DATA 228,227,164,165,163,252,229,166,167,252,252,252,252,252,230,252
160 DATA 231,222,223,232,234,233,243,241,240,237,174,173,178,177,176,168
170 DATA 246,254,252,245,244,189,252,252,179,171,242,252,252,252,252,255
180 DIM Pc2hp$[256]
190 CLEAR SCREEN
200 PRINT "Set up PC (Code page 850) to HP (Roman-8) translation string"
210 FOR I=0 TO 255
220 READ C
230 Pc2hp$[I+1;1]=CHR$(C)
240 NEXT I
250 CONFIGURE KBD 0 TO Pc2hp$
260 END

See Also:
CONFIGURE KEY, CONFIGURE LABEL, LEXICAL ORDER IS

CONFIGURE KEY
Assigns editor functions to keyboard keys.

Syntax: CONFIGURE KEY key-number TO function-number

where: key-number = numeric-expression
function-number = numeric-expression

Sample: CONFIGURE KEY 1 TO NUM("<")
View Sample:    CONFIGURE KEY.BAS    (also found in examples directory)
Description:

CONFIGURE KEY specifies what keyboard function a keyboard key generates. This statement is
version dependent. Statements generated for the DOS version of HTBasic will not work with the
Windows version, etc. See "Using the Integrated Environment" in the Installing and Using
manual for an explanation of how this statement is used in each specific version. The following
example makes the Backspace key generate the LEFT function CHR$(255)&"<":

CONFIGURE KEY 1 TO NUM("<")

See Also:
CONFIGURE KBD

CONFIGURE LABEL
Defines characters for the LABEL statement.

Syntax: CONFIGURE LABEL first-char TO string-expression
CONFIGURE LABEL first-char TO string-name$(*)

where: first-char = numeric-expression rounded to an integer.

Sample: CONFIGURE LABEL 128 TO CHR$(128)&CHR$(112)&CHR$(127)&
CHR$(15)&CHR$(0)

CONFIGURE LABEL 191 TO Newchars$(*)
View Sample:    CONFIGURE LABEL.BAS    (also found in examples directory)
Description:

CONFIGURE LABEL defines additional characters for use with the LABEL statement. You may
define one character by giving a simple string or string expression or several characters by
giving a string array. The first-char value specifies the first character to define. Characters in the
range 33 to 255 may be defined. To delete a definition, use a zero length string for the
definition. See the User's Guide for a complete explanation of how to use this feature. Each
character in the definition string has the form CHR$(Move + x*16 + y), where Move is 0 or 128,
x ranges from 0 (far left) to 7 and y ranges from 0 (bottom) to 15. The baseline is y=5. The
following example defines the character "H":

CONFIGURE LABEL 72 TO CHR$(133)&CHR$(14)&CHR$(238)&
CHR$(101)&CHR$(138)&CHR$(106)

See Also:
CONFIGURE KBD, CONFIGURE KEY, LABEL, LEXICAL ORDER IS

CONFIGURE LONGFILENAMES
Specifies use of long filenames.

Syntax: CONFIGURE LONGFILENAMES { ON | OFF }

Sample: CONFIGURE LONGFILENAMES ON
CONFIGURE LONGFILENAMES OFF
View Sample:    CONFIGURE LONGFILENAMES.BAS    (also found in examples directory)
Description:

Long filenames are allowed in addition to the standard 8.3 names. The filenames can be 256
characters long and can have embedded spaces. With longfilenames off, HTBasic removes
spaces from file specifiers and CAT listings don't have enough room for long filenames. By
default use of long filename is enabled. To disable longfilenames use the statement:

CONFIGURE LONGFILENAMES OFF

With LONGFILENAMES ON, spaces are not deleted from directory and file specifiers since they
may be significant. Also, the listing format for CAT is changed to accommodate varying length
filenames and four digit years. It is roughly modelled after the NT DIR command listing format.

See Also:
CAT

CONFIGURE LONGCATDATES
Specifies use of long dates in CATalogs.

Syntax: CONFIGURE LONGCATDATES { ON | OFF }

Sample: CONFIGURE LONGCATDATES ON
CONFIGURE LONGCATDATES OFF
Description:

By default use of long CAT DATES are enabled. To disable long year display use the statement:

CONFIGURE LONGCATDATES OFF

With LONGCATDATES ON, four digit years are displayed. With LONGCATDATES turned off, the
four digit year information is still retained, but is just not displayed.

See Also:
CAT

CONFIGURE MSI

Specifies HP style volume specifier translations.
Syntax: CONFIGURE MSI hp-msus TO path-specifier

CONFIGURE MSI { ON | OFF }

where: hp-msus = string expression of an HP BASIC msus.

Sample: CONFIGURE MSI ":,700,1" TO "c:\TEST\DATA\"
CONFIGURE MSI ":INTERNAL,4,0" TO "/usr/tmp/"
CONFIGURE MSI OFF
View Sample:    CONFIGURE MSI.BAS    (also found in examples directory)
Description:

CONFIGURE MSI specifies a file path-specifier to be substituted for an HP BASIC msus (mass
storage unit specifier or volume specifier). Directory names must end with a directory separator
character. The separator character is the backslash, "\" For example, the following statements
would assign the I/O path, @In, to the file "B:\RUN2\DATA":

CONFIGURE MSI ":,700,1" TO "B:\RUN2\"
ASSIGN @In TO "DATA:,700,1"

Specifying a new path-specifier for a defined hp-msus replaces the previous definition.
Specifying a zero length path-specifier removes the previous definition. Note that file names of
one letter followed by an hp-msus (i.e., C:,702,1) and file names with an embedded colon
(i.e., .xnews.sun:0) will be misinterpreted. MSI translation can be turned off with the statement
CONFIGURE MSI OFF when such conflicts arise. To turn translation back on, use CONFIGURE
MSI ON.

See Also:
MASS STORAGE IS

CONFIGURE PRT

Specifies the value of PRT.
Syntax: CONFIGURE PRT TO device-selector

Sample: CONFIGURE PRT TO 701
View Sample:    CONFIGURE PRT.BAS    (also found in examples directory)
Description:

CONFIGURE PRT specifies the device-selector that the PRT function returns. It also does an
implicit DUMP DEVICE ISPRT. For example, under DOS the following statements output the
message "Hello There" to the printer port (assuming 10 is the printer port ISC).

CONFIGURE PRT TO 10
OUTPUT PRT; "Hello There"

See Also:
DUMP DEVICE IS, PRT

CONFIGURE SAVE

Sets the file type produced by SAVE.
Syntax: CONFIGURE SAVE ASCII { ON | OFF }

Sample: CONFIGURE SAVE ASCII OFF
View Sample:    CONFIGURE SAVE.BAS    (also found in examples directory)
Description:

CONFIGURE SAVE ASCII sets the file type SAVE uses when saving a file to disk. SAVE ASCII
ON, the default, produces a LIF ASCII file. This type of file is useful for exchanging programs with
older HP BASIC workstations that can not GET DOS ASCII or UNIX ASCII program files. The
Installing and Using manual has more information on Diskette Transfer Utilities.

SAVE ASCII OFF produces an ordinary ASCII file. Such a file is compatible with all popular
program editors, most word processors and newer releases of HP BASIC. RE-SAVE produces the
same file type as an existing file or the file type specified by CONFIGURE SAVE ASCII if no file
exists. GET can read either file type.

If you use CONFIGURE SAVE ASCII OFF you should not embed carriage-returns or line-feeds in
string literals since GET will interpret them as end-of-line indicators.

See Also:
CONFIGURE BDAT, CONFIGURE CREATE, RE-SAVE, SAVE

CONFIGURE SYSTEM
Returns the conjugate of a complex number.

Syntax: CONFIGURE SYSTEM (“DEVICE; OPTION”)

Sample: CONFIGURE SYSTEM (“CAT;RECURSIVE”)
CONFIGURE SYSTEM (“CAT”) !Sets to default
CONFIGURE SYSTEM (“DUMP; PLUS”)
CONFIGURE SYSTEM (“DUMP”) !Sets to default
CONFIGURE SYSTEM (“HPBDAT;READEOF")
CONFIGURE SYSTEM ("HPBDAT")

Description:
CONFIGURE SYSTEM sets the system parameters.    To set a device to default, omit the option
parameter.

Options
CAT RECURSIVE – Using the RECURSIVE option displays file counts during CAT commands.

DUMP PLUS – Normally the DUMP command only copies the contents of the main HTBasic child
window.    With this option on, all windows inside the HTBasic parent window will be copied to the
DEMP device.

"HPBDAT;READEOF" - for proper reading of BDAT files    with HP style headers.    The default
setting is to report an error on EOF rather than to read the contents of the file. The default
behavior is to disable reading of the file. This option may be placed back to the default using:
CONFIGURE SYSTEM "HPBDAT"

See Also:
CONFIGURE BDAT, CONFIGURE CREATE

CONJG

Returns the conjugate of a complex number.
Syntax: CONJG(numeric-expression)

Sample: C=SQRT(Z*CONJG(Z))
View Sample:    CONJG.BAS    (also found in examples directory)
Description:

CONJG(Z) is defined as

CONJG(Z) = CMPLX(REAL(Z), -IMAG(Z))

Notice that the real part is unchanged. If the imaginary part is positive, it will be made negative.
If the imaginary part is negative, it will be made positive. The effect in the complex domain is to
mirror the number about the real axis.

See Also:
ABS, ARG, CMPLX, IMAG, REAL

CONT

Restarts a program which is PAUSEd.
Syntax: CONT [line-number | line-label]

Sample: CONT
CONT 550
CONT Thislabel
Description:

A program which is in the Paused state (as indicated by the Run Indicator) can be restarted with
the CONTINUE key, button, menu, or with the CONT command. If you specify a line number or
line label, it must be in the current context or the MAIN context and execution continues at the
specified line. If no line is specified, execution resumes at the next line which would have been
executed had the program not been PAUSEd.

CONT can be used interactively to debug a program or to restart an un-intentionally aborted
program. Variables retain their current values. While the program is PAUSEd, you can see and
change the values of variables and use any commands that do not change the program and
then CONTinue the program. If a change is made to any program statement, the program is
stopped and you cannot continue its execution with CONT.

This command can only be executed from the keyboard. It cannot be included in a program.

See Also:
PAUSE, RUNLIGHT

CONTROL

Sends control information to an interface, I/O path, or widget attribute(s).
Syntax: CONTROL dest [,register] ; value [,value...]

where: dest = @io-path | interface-select-code
register = numeric-expression rounded to an integer
value = numeric-expression | numeric-array(*)

Sample: CONTROL @Path,5;Record
CONTROL 2;Column,Line
CONTROL 1801,19;Gains(*)
CONTROL @Strip2;SET (“CURRENT AXIS”:“X”, “RANGE”:20)
CONTROL @Slider;SET (“VALUE”:Setpoint)
View Sample:    CONTROL.BAS    (also found in examples directory)

Description:
Use CONTROL to send control information to an interface or set parameters associated with an
I/O
path. Information is sent by specifying a starting register and a value. If no register is specified,
register zero is used. If you specify more than one value, the register number is incremented by
one
after writing each value.

If the destination is an I/O Path, information is set in the I/O path rather than being sent to the
device or file. If the destination is an interface select code (ISC), then the information is sent to
the
device driver for interpretation. Consult the documentation for a particular device to find the
usage
for each register.

The range of legal registers and the meaning of values written to them differ for each
interface. The User's Guide describes the CONTROL and STATUS registers for many of
the interfaces and for I/O paths.

Basic Plus

Each widget has a variety of attributes that control its appearance and behavior.    The
CONTROL command is used to assign a new value to a widget attribute.    The widget
must
have been created previously using an ASSIGN statement.    Attributes are either scalar
(may contain a single value) or vector (may be assigned an array of values)    and have
values of either numeric or string type.

You can use a shorthand method to assign values to several scalar attributes without
naming them individually on the ASSIGN statement.    To do this, you store all the
attributes
in a string array and all the matching values in another array of the same size.

Then, when you specify both array names in the SET option of the ASSIGN statement, the
attribute named in each element of the string array will be assigned the corresponding
value in the value array.    Elements of the string array that contain nothing, or nothing
but
blanks, will be ignored.    For example:

Attribs$(1) = "X"
Attribs$(2) = "Y"
Attribs$(3) = "WIDTH"
Attribs$(4) = "HEIGHT"
Values(1) = 5
Values(2) = 5>
Values(3) = 500
Values(4) = 300

CONTROL @Panel;SET (Attribs$(*):Values(*))

Porting to HP BASIC:
TransEra has added capabilities to several of the standard interfaces. The additional registers
resulting from these enhancements are always numbered 100 and above. In some instances
HTBasic can pass arrays to and from a single register. This capability is used for things like gain
control lists in data acquisition drivers. These new features are not available in HP BASIC. They
should not be used in programs that must be ported back to HP BASIC.

See Also:
STATUS, READIO, WRITEIO

COPY

Copies files.
Syntax: COPY old-file-specifier TO new-file-specifier [;PURGE]

Sample: COPY "Oldfile" TO A$&VAL$(I)
COPY "/Empl1/AFile" TO "/Empl2/AFile"
COPY A$&B$ TO "A:\DIR\FILE";PURGE
View Sample:    COPY.BAS    (also found in examples directory)
Description:

COPY makes a duplicate copy of a file and gives it a new name. Use the COPY command as a
program statement or as a keyboard command. If the new-file-specifier already exists, an error
is reported if PURGE is not present. If PURGE is present, any existing file named new-file-
specifier will be replaced.

HTBasic does not support the copy of a full disk to another disk. Use the operating system for
full disk copies. You can use the DOS "DISKCOPY" or "XCOPY" commands. If wildcards are
included in the command, then several files can be copied with a single command.

See Also:
CAT, CREATE, CREATE ASCII, CREATE BDAT, MASS STORAGE IS, PERMIT, PROTECT, PURGE,
RENAME, SYSTEM$("MSI")

COPYLINES

Copies program lines from one location to another.
Syntax: COPYLINES start [,end] TO target

where: start, end, and target = line-number | line-label

Sample: COPYLINES 10,100 TO 500
COPYLINES 1500 TO 2222
COPYLINES ALabel,BLabel TO Clabel

Description:
Use COPYLINES to copy a block of lines to a new location, while leaving the original lines
untouched. This differs from the MOVELINES statement since the MOVELINES statement deletes
the original program portion. If no ending line is specified, only one line is copied. The target line
cannot be in the range specified by start and end. If start doesn't exist, the line immediately
after that line number is used. If end doesn't exist, the line immediately before that line number
is used. If a non-existent line label is specified, an error will be reported.

Line numbers and labels are renumbered and updated if needed. However, line number
references in lines not being copied remain linked to the original lines rather than the newly
created lines. COPYLINES may not copy lines containing a SUB program or DEF FN definition
unless the new line number is greater than any existing line number. An error will be issued if
this is not the case. This is because a SUB or DEF FN must follow all previous lines. If an error
occurs during a COPYLINES, the copy is terminated and the program is left partially changed.

This command can only be executed from the keyboard while no program is running. It cannot
be included in a program.

See Also:
CHANGE, DEL, DELSUB, EDIT, FIND, INDENT, MOVELINES, REN, SECURE, XREF

COS

Returns the cosine of an expression.
Syntax: COS(numeric-expression)

Sample: A=COS(B)
Cosine=COS(X+45)
PRINT Cosine+COS(Angle)
View Sample:    COS.BAS    (also found in examples directory)
Description:

The range of the cosine function is -1 and 1 inclusive. The numeric expression is treated as an
angle in the current trigonometric mode: RADians or DEGrees. The default trigonometric mode is
RADians.

COMPLEX Arguments
COS accepts either a COMPLEX or REAL argument and returns a value of the same type. For
COMPLEX arguments the angle must be specified in radians, regardless of the current
trigonometric mode. The real and imaginary parts of COS(Z) are calculated (using real
arithmetic) as

REAL(COS(Z)) = COS(REAL(Z))*COSH(IMAG(Z))
IMAG(COS(Z)) = -SIN(REAL(Z))*SINH(IMAG(Z))

Notice that intermediate values generated during the calculation of the function can cause over
or underflow errors for very large or small values of Z.

See Also:
ACS, ASN, ATN, SIN, TAN, ASNH, ACSH, ATNH, COSH, SINH, TANH, DEG, PI, RAD

COSH

Returns the hyperbolic cosine of an expression.
Syntax: COSH(numeric-expression)

Sample: A=COSH(B)
Hcosine=COSH(X+PI)
PRINT COSH(CMPLX(X,Y))
View Sample:    COSH.BAS    (also found in examples directory)
Description:

COSH accepts either a COMPLEX or REAL argument and returns a value of the same type. The
argument must be specified in radians, regardless of the current trigonometric mode. The real
and imaginary parts of COSH(Z) are calculated (using real arithmetic) as

REAL(COSH(Z)) = COSH(REAL(Z))*COS(IMAG(Z))
IMAG(COSH(Z)) = SINH(REAL(Z))*SIN(IMAG(Z))

Notice that intermediate values generated during the calculation of the function can cause over
or underflow errors for very large or small values of Z.

See Also:
ACSH, ASNH, ATNH, COS, SINH, TANH

CREATE

Creates an ordinary file.
Syntax: CREATE file-specifier,records

where: records = numeric-expression, rounded to an integer.

Sample: CREATE "DOSASCII.TXT",75
CREATE "C:"&Filename$,Size
CREATE "/Net2/Users/Lori/AFile",50
Description:

The CREATE statement creates an ordinary file of the specified length on the mass storage
media, in the specified directory or in the current working directory. CREATE does not open files;
use ASSIGN to open files. Since Windows supports extendable files, the number of records is
ignored and the file is created with a length of zero.

HTBasic supports ordinary files as well as typed files. HTBasic file types are LIF ASCII, BDAT, BIN
and PROG. In a CAT listing, the file type column is blank for ordinary files. Unlike typed files, no
special header or other embedded information is placed in the file. An ordinary file with FORMAT
ON is compatible with all programs that support DOS ASCII files.

Do not confuse the terms ASCII (DOS ASCII, Windows ASCII, UNIX ASCII, etc.) and LIF ASCII. A
Windows ASCII file is an ordinary file which contains only printable characters and the end of
each line is marked with a carriage return and line feed. A UNIX ASCII file is an ordinary file
which contains only printable characters and the end of each line is marked with a line feed. A
LIF ASCII file is a typed file which contains string items preceded by an item length and followed
by a pad byte when the string length is odd. When the term "ASCII" is used in the HTBasic
manual set or in a CAT listing, it refers to LIF ASCII. When the term is used outside the manual
set, you will need to determine for yourself what kind of ASCII is spoken of.

See Also:
ASSIGN, CAT, COPY, CREATE ASCII, CREATE BDAT, CREATE DIR, MASS STORAGE IS, PURGE,
RENAME, PERMIT, PROTECT, SYSTEM$("MSI")

CREATE ASCII

Creates a LIF ASCII file.
Syntax: CREATE ASCII file-specifier,records

where: records = numeric-expression, rounded to an integer

Sample: CREATE ASCII "Tables",75

CREATE ASCII "C:"&Text$,Size
CREATE ASCII "/DirX/DirY/DirZ/AFile",50

View Sample:    CREATE ASCII.BAS    (also found in examples directory)

Description:
The CREATE ASCII statement creates a LIF ASCII file of specified length on the mass storage
media, in the specified directory or in the current working directory. CREATE ASCII does not
open files; use ASSIGN to open files. Since Windows supports extendable files, the file is created
with a length of zero, but a CAT listing shows the number of records specified in the CREATE.

HTBasic supports typed files as well as ordinary files. HTBasic file types are LIF ASCII, BDAT, BIN
and PROG. In a CAT listing, LIF ASCII files are listed as "ASCII" files.

A utility program, HPCOPY, is provided for most versions of HTBasic to transfer LIF ASCII files
between HP LIF diskettes and DOS disks. Data can also be transferred between HTBasic and
Series 200/300 computers by attaching an interface between the computers and writing a short
program on each computer to transfer the data. Programs can be transferred in ASCII using
either of these methods.

Do not confuse the terms ASCII (DOS ASCII, NT ASCII orUNIX ASCII), and LIF ASCII. A Windows
ASCII file is an ordinary file which contains only printable characters, and the end of each line is
marked with a carriage return and line feed. A UNIX ASCII file is an ordinary file which contains
only printable characters and the end of each line is marked with a line feed. A LIF ASCII file is a
typed file which contains string items preceded by an item length and followed by a pad byte
when the string length is odd. When the term "ASCII" is used in the HTBasic manual set or in a
CAT listing, it refers to LIF ASCII. When the term is used outside the manual set, you will need to
determine for yourself what kind of ASCII is spoken of.

File Headers
As opposed to ordinary files, typed files have a header containing necessary information about
the file. The presence of the header is transparent to BASIC programs and no action should be
taken to account for it. HTBasic can work with files that have either an HTB or an HP LIF file
header. The HTB file header is 256 bytes. The HP LIF file header is 512 or 768 bytes. The
CONFIGURE CREATE statement determines which kind of header is created by this statement. By
default, HTB file headers are created.

See Also:
ASSIGN, CAT, COPY, CREATE, CREATE BDAT, CREATE DIR, MASS STORAGE IS, PURGE, RENAME,
PERMIT, PROTECT, SYSTEM$("MSI")

CREATE BDAT
Creates a BDAT (binary data) file.

Syntax: CREATE BDAT file-specifier, records [,record-size]

where: records = numeric-expression, rounded to an integer.
record-size = numeric-expression, rounded to integer, then rounded
up to even integer or one.

Sample: CREATE BDAT "Doc",50
CREATE BDAT Vol$&Rec$,Bytes,1
CREATE BDAT "/usr/bin/Group",10
View Sample:    CREATE BDAT.BAS    (also found in examples directory)
Description:

The CREATE BDAT statement creates a binary data file with the specified length and record size
on the mass storage media, in the specified directory or in the current working directory.
CREATE BDAT does not open files; use ASSIGN to open files. Since Windows supports
extendable files, the file is created with a zero length, but a CAT listing shows the number of
records specified in the CREATE.

The record-size is a numeric expression, rounded to an integer in the range 1 to 65534 and
should be an even integer or one. This specifies the number of bytes per record. The default is
256 bytes.

A utility program is provided with most versions of HTBasic to transfer BDAT files between HP LIF
diskettes and DOS disks. Data can also be transferred between HTBasic and Series 200/300
computers by attaching an interface between the computers and writing a short program on
each computer to transfer the data.

BDAT files must be written with MSB FIRST in order for the data to be correctly readable by a
Series 200/300 computer. CONFIGURE BDAT can be used to specify the default byte ordering of
created files. If CONFIGURE BDAT is not used, HTBasic creates BDAT files using the native byte
order of the computer.

File Headers
HTBasic supports typed files as well as ordinary files. HTBasic file types are LIF ASCII, BDAT, BIN
and PROG. As opposed to ordinary files, typed files have a header containing necessary
information about the file. The presence of the header is transparent to BASIC programs and no
action should be taken to account for it. HTBasic can work with files that have either an HTB or
an HP LIF file header. The HTB file header is 256 bytes. The HP LIF file header is 512 or 768
bytes. The CONFIGURE CREATE statement determines which kind of header is created by this
statement. By default, HTB file headers are created.

See Also:
ASSIGN, CAT, COPY, CREATE, CREATE ASCII, CREATE DIR, MASS STORAGE IS, PERMIT, PROTECT,
PURGE, RENAME, SYSTEM$("MSI")

CREATE DIR
 Creates a directory.

Syntax: CREATE DIR directory-specifier

Sample: CREATE DIR "../branch/leaf"
CREATE DIR "C:\ADIR\BDIR"
CREATE DIR "SUB"
View Sample:    CREATE DIR.BAS    (also found in examples directory)
Description:

CREATE DIR creates a directory and is almost exactly like the HFS or SRM command of the
same name. It is the equivalent of the DOS MD or MKDIR commands.

See Also:
CAT, COPY, CREATE, CREATE ASCII, CREATE BDAT, MASS STORAGE IS, PERMIT, PROTECT, PURGE,
RENAME, SYSTEM$("MSI")

CRT

Returns the integer 1, the CRT interface select code.
Syntax: CRT

Sample: PRINTER IS CRT
ENTER CRT;Array$(*)
View Sample:    CRT.BAS    (also found in examples directory)
Description:

The CRT function always returns the constant 1. It is a useful mnemonic and documentation tool
in referring to the CRT interface select code.

See Also:
KBD, PRT

CSIZE

Sets the character size for LABEL and SYMBOL.
Syntax: CSIZE height [, expansion-factor]

where: height = numeric-expression
expansion-factor = numeric-expression

Sample: CSIZE 8
CSIZE 10,0.7
CSIZE Height,Width/Height
View Sample:    CSIZE.BAS    (also found in examples directory)
Description:

CSIZE sets the character size (height) and the expansion factor (width/height) of the text
generated by the LABEL and SYMBOL statements. They are specified in graphic display units. A
negative height or expansion-factor inverts the character in relation to that dimension. The
default character height is 5 and the default expansion factor is 0.6. These values are in effect
at start-up or when GINIT is executed or RESET is pressed.

See Also:
LABEL, LDIR, LORG, SYMBOL

CSUB

Compiled SUBprograms.
Description:

CSUBs are compiled subprograms that are created with special tools. CSUBs are loaded with
LOADSUB and deleted with DELSUB. A CSUB looks like a SUB statement and it is called with a
CALL statement. A CSUB cannot be created or changed in BASIC and therefore any operation
that checks for syntax cannot be used. However, operations that are not syntax checked
(renumber, etc.) are allowed on a CSUB

The HTBasic Numeric Compiler is the primary tool for creating CSUBs. This compiler is designed
so the casual HTBasic user can produce fast numerically intensive subprograms. The user writes
one or more SUBs in BASIC which contain the calculation intensive code in his program. The SUB
or SUBs are then compiled, creating CSUBs which execute many times faster than the original
BASIC. No additional programming skill is necessary. Speed of execution of numerically intensive
subprograms is the main goal of this compiler.

The CSUB Toolkits allows creation of CSUBs in C++. Creation of CSUBs with the CSUB Toolkit
requires programming experience in C/C++.

See Also:
CALL, DELSUB, LOADSUB, READIO, WRITEIO

CVT$

Convert strings from one alphabet to another.
Syntax: CVT$(old-string, cvt-name)

where: old-string = string-expression

cvt-name = string-expression

Sample: A$ = CVT$(B$,"HANKAKU KATAKANA TO HANKAKU HIRAGANA")
A$ = CVT$(B$,"HANKAKU HIRAGANA TO HANKAKU KATAKANA")
Description:

The CVT$ string function translates the characters in old-string from one alphabet to another. It
converts the string character by character and handles a mixture of one- and two-byte character
strings.

The CVT$ string function is used for two-byte languages like Japanese. The legal values for cvt-
name, available alphabets and character mapping between alphabets depends on the specific
version of HTBasic.

See Also:
FBYTE, SBYTE

DATA

Stores data items in the program.
Syntax: DATA [data-item] [,data-item...]

where: data-item = ["] string-literal ["] | numeric-constant

Sample: DATA 1.9,"Counts",3.14,56,"Number of Events"
DATA item1,item2,item3
DATA "comment-tail: !","comma: ,","quote: """
DATA 1984,Number of Days
View Sample:    DATA.BAS    (also found in examples directory)
Description:

DATA and READ statements can quickly and easily provide values for program variables. All
DATA statements in a context form a single data list. Each context (main program and
subprograms) has its own data list. Each variable in the variable list of a READ statement picks
up a value from the DATA list, starting in sequence: the first variable in a READ picks up the first
value in the data list, then the next variable picks up the next value, etc. When a subprogram is
called, the current point in the sequence is remembered and restored when control returns to
the calling context.

The DATA items are treated as literals making it necessary for the computer to process the
numeric variables with the VAL function. An error is generated if string values are found in
numeric variables, but numeric values may be placed in string variables. Leading and trailing
blanks are deleted from unquoted literals. Unquoted literals cannot contain quote marks,
comment tails or commas. To include one of these characters in a literal, you must use quotation
marks around the literal. A quotation mark is included inside the literal by using two quote
marks in the place where you wish to have one. To include a COMPLEX number in a DATA
statement, list the real and imaginary parts separately, separated by a comma.

You can make a READ start at the beginning of any DATA statement by using a RESTORE
command.

See Also:
READ, RESTORE

DATE

Converts a string representing a date to a number of seconds.
Syntax: DATE(date-string)

where: date-string = string-expression.

Sample: SET TIMEDATE DATE("6 NOV 1992")
Cycle=DATE("7 JAN 1988)-DATE("1 JAN 1988")
View Sample:    DATE.BAS    (also found in examples directory)
Description:

The date, encoded in a string in the form "DD MMM YYYY" or "DD MONTH YYYY", is converted to
the number of seconds since the start of the Julian Period in 4713 BC.

If DATE is used as the argument for SET TIMEDATE, then the clock will be set to midnight of the
date specified in the DATE argument. The date must be within the legal range supported by
your operating system.

Actually, the Rocky Mountain BASIC time base is slightly different than the Julian Period, but can
easily be converted. The following function converts a date in the form "DD MMM YYYY" to the
Julian Day:

10 DEF FNJd(A$)
20 RETURN (DATE(A$) DIV 86400)-1
30 FNEND

See Also:
DATE$, SET TIME, SET TIMEDATE, TIME, TIME$, TIMEDATE

DATE$
 Takes a numeric value representing seconds and formats it into a date string.

Syntax: DATE$(seconds)

where: seconds = numeric expression.

Sample: PRINT DATE$(TIMEDATE)
A$=DATE$(Newtime)
View Sample:    DATE$.BAS    (also found in examples directory)
Description:

If TIMEDATE is used as the argument, DATE$ returns the current date as a string in the form DD
MMM YYYY, where DD is the current day, MMM is the current month in three letter abbreviated
form and YYYY is the current year.

The numeric value specified is loosely based on the Julian Period. To convert a Julian Day number
to the string form "DD MMM YYYY", use the following function:

10 FNJd2date$(Jd)
20 RETURN DATE$((Jd+10)*86400)
30 FNEND

See Also:
DATE, SET TIME, SET TIMEDATE, TIME, TIME$, TIMEDATE

DEALLOCATE

Frees memory space reserved by the ALLOCATE statement.
Syntax: DEALLOCATE variable-name [$] [(*)] [, ...]

Sample: DEALLOCATE P1$,Aarray(*),Code$(*)
View Sample:    DEALLOCATE.BAS    (also found in examples directory)
Description:

ALLOCATE and ON event statements reserve memory on the BASIC stack; therefore, a
DEALLOCATE request may not immediately free memory for another use if it is not the next
area of memory to come off the stack. Subprogram variables, including those ALLOCATEd, are
automatically DEALLOCATEd upon subprogram exit. If you try to DEALLOCATE a variable
which is not currently ALLOCATEd, you get an error.

See Also:
ALLOCATE, COM, COMPLEX, DIM, INTEGER, OPTION BASE, REAL, REDIM

DEF FN

Begins a user-defined function subprogram.
Syntax: DEF FN function-name[$] [(parameter-list)]

statements
RETURN { numeric-expression | string-expression }
statements
FNEND

where: statements = zero, one or more program statements,
including additional RETURN statements.
parameter-list = [param [,param...]] [,] [OPTIONAL param [,param...]]
[,] = the optional comma is only needed when items
occur on both sides of it.
param = [type] numeric-name [(*) [BUFFER]] |
string-name$ [(*) | BUFFER] | @io-path
type = REAL | INTEGER | COMPLEX

Sample: DEF FNString$(@Path,REAL Array(*),OPTIONAL Factor$)
DEF FNNum(OPTIONAL X(*))
100 DEF FNFactorial(F)
110 IF F<0 THEN CAUSE ERROR 19
120 IF F<=1 THEN RETURN 1
130 RETURN F*FNFactorial(F-1)
140 FNEND
View Sample:    DEFFN.BAS    (also found in examples directory)
Description:

When typing in a new user-defined function subprogram, the DEF FN must be the highest
numbered line in the present program. The body of the function then follows. SUB or DEF FN
statements are not allowed inside the body of the function. Lastly, the function definition is
completed by a FNEND statement. Optionally, comments about the function can follow the
FNEND statement. At least one RETURN statement must exist in the function definition. The
RETURN statement specifies the value that is to be returned. The type of the value must match
the type of the function name; a string function must return a string value and a numeric
function must return a numeric value. If execution reaches the FNEND statement, an error will
result.

When called, a list of arguments can be passed to the function and are associated with the DEF
FNparameters. Parameters to the right of the OPTIONAL    keyword are optional and need not be
passed in the argument list. An error results if the function attempts to use an optional
parameter with no value passed to it. To avoid this, use NPAR to check the number of arguments
passed to the function.

All variables defined in a subprogram that are not COM variables are local to the subprogram.
Upon each entry to the subprogram they are set to zero.

A parameter may be used as a buffer if declared as a BUFFER in both the calling context
argument list and the DEF FN parameter list. The variables of a parameter list cannot be
declared in COM or other variable declaration statements.

Porting Issues
Nested I/O does not return an error under HTBasic but should not be used because future
improvements may make it illegal. Using nested I/O also prevents the program from running
under HP BASIC.

HTBasic limits the depth that recursion can occur. The depth is limited by the size of the
processor stack, not the BASIC workspace size.

See Also:
CALL, FN, NPAR, SUB

DEG

Sets the trigonometric mode to degrees for all angle measurements.
Syntax: DEG

Sample: DEG
View Sample:    DEG.BAS    (also found in examples directory)
Description:

All angle arguments and functions that return an angle measurement use the current
trigonometric mode which can be either radians or degrees. DEG sets the trigonometric mode to
degrees. The default trigonometric mode at start-up or after a SCRATCH A is radians.

A subprogram will use the same trigonometric mode as its caller unless it executes a RAD or
DEG statement. Upon returning to the caller the previous trigonometric mode is restored.

See Also:
ACS, ASN, ATN, COS, RAD, SIN, TAN

DEL

Deletes program lines.
Syntax: DEL start [, end]

where: start and end = line-number | line-label

Sample: DEL 100
DEL Go,Stop
DEL Thislabel,1500
DEL 100,1000

Description:
A range of program lines can be deleted by separating the starting and ending line numbers
with a comma. If only one line is specified, only that line is deleted. Once a DEL statement has
been executed, the specified lines cannot be retrieved.

SUB and DEF FN statements can not be deleted unless the entire subprogram is included in the
range.

DEL cannot be executed from a running program, but can be executed while the program is
PAUSEd (after DEL executes, the program is placed in a STOP state).

See Also:
CHANGE, COPYLINES, DELSUB, EDIT, FIND, INDENT, MOVELINES, REN, SECURE, XREF

DELSUB

Deletes SUB or CSUB subprograms from memory.
Syntax: DELSUB context [,context...] [TO END]

where: context = subprogram-name | FN function-name | string-expression

Sample: DELSUB FNProc$
DELSUB Transform TO END
DELSUB Unit1,Unit2,Unit3,Unit4
View Sample:    DELSUB.BAS    (also found in examples directory)
Description:

DELSUB can delete one or more subprograms, CSUBs, or user-defined function subprograms
from memory. If TO END is specified in the DELSUB statement, then the specified subprogram
plus all following subprograms are deleted to the end of the program. If you specify a name and
two subprograms both have that name, the first one is deleted. You cannot delete a subprogram
if it is currently active or if it is referenced by a currently active ON event statement.

If a string expression specifies the subprogram name in the DELSUB statement, the string
expression is called a subprogram pointer because it "points" to the subprogram rather than
explicitly naming it. As the expression changes, the pointer points to different subprograms. The
following example illustrates how this can be useful.

10 SUB Xform(X(*))
20 Method$="Xform"&VAL$(RANK(X))
30 IF NOT INMEM(Method$) THEN LOADSUB Method$
40 CALL Method$ WITH(X(*))
50 DELSUB Method$
60 SUBEND

The subprogram must be specified with the initial character in uppercase, and subsequent
characters in lowercase. Subprogram pointers can also be used in CALL, INMEM, LOADSUB, and
XREF statements.

See Also:
CALL, COPYLINES, CSUB, DEF FN, DEL, EDIT, FIND, INMEM, LOADSUB, MOVELINES, REN, SECURE,
SUB, XREF

DET
Returns the determinant of a matrix.

Syntax: DET [(numeric-array)]

Sample: Fmatrix=DET
PRINT DET(Fmatrix)
View Sample:    DET.BAS    (also found in examples directory)
Description:

Use the DET function to find the determinant of a matrix. If no argument is given, DET returns
the determinant of the most recently inverted matrix. Zero is returned if no matrix has been
inverted since start-up, SCRATCH or SCRATCH A. If the determinant of a matrix is zero, the
matrix does not have a valid inverse. If a very small value is returned compared to the matrix
elements, this may imply the matrix cannot accurately be inverted by computer methods.

See Also:
DOT, MAT, SUM

DIALOG
Generates an HTBasic Plus dialog of the specified type.

Syntax: DIALOG

Sample: DIALOG “WARNING”, “Reactor Meltdown Imminent”,Btn;SET (“BACKGROUND”:2)
DIALOG “STRING”, “Enter your Operator ID:”;
RETURN (“VALUE”:Resp$),TIMEOUT 10

DIM Speeds$(0:2)[20]
!
Speeds$(0)= “Fast”
Speeds$(1)= “Slow”
!
DIALOG “LIST”, “Pick your speed:”, Btn;
SET (“WIDTH”:250, “HEIGHT”:80, “ITEMS”:Speeds$(*)),
RETURN (“SELECTION”:Resp)

Description:
One of the fundamental HTBasic Plus entities.    A dialog is created on the computer screen with
the DIALOG statement from an executing BASIC program or from the command line.

The DIALOG statement is a shortcut method for requesting input from the operator.    The
DIALOG statement functions in a similar fashion to the INPUT and LINPUT statements by
collecting operator input without using more complex statements.

Using the DIALOG statement, you can perform the functional equivalent of the following
(lengthier) process that would otherwise require more statements.

1. You create a PANEL widget that contains a prompt string, a single widget, and
some button widgets.

2. You interact with the contained widget.

3. Then, when you “press” one of the buttons, the system destroys all of the widgets
that make up the “dialog PANEL” after passing the selected values from each of the
widgets into the variables you have specified.

Types of Dialogs
The types of dialogs that may be created with the DIALOG statement are: COMBO, ERROR, FILE,
INFORMATION, KEYPAD, LIST, NUMBER, QUESTION, STRING, and WARNING.

DIALOG/DEFAULT BUTTONS
Use the DIALOG BUTTONS attribute to create the buttons in the dialog.    These buttons appear in
a single row at the bottom of the dialog, in the same order (left to right on the screen) in which
they appear in the attribute array.

To specify one of these buttons as the default button, use the DEFAULT BUTTON attribute.    Both
DIALOG BUTTONS and DEFAULT BUTTON have different default values, depending on the type of
dialog created.

selected button Option
If you specify the optional variable for selected button, when the DIALOG statement completes,
the variable will contain: an index into the DIALOG BUTTONS array that identifies which button
the user pushed to terminate the dialog, or a –1, indicating a timeout has occurred.

The DIALOG BUTTONS array is always treated as OPTION BASE 0, regardless of how it was
dimensioned.

SET Option
The SET option is used to specify the initial values for the attributes and to specify the initial
values to be displayed by the contained widget (for example, the contents of the STRING widget
in the STRING Dialog).

RETURN Option
The RETURN option is used to specify the variables that will receive the final values of the dialog
attributes just before the dialog is destroyed.    These variables are used primarily to
communicate the state of the contained widget back to the program when the user terminates
the dialog.    For example, to find out what the user typed into a STRING dialog, you should
RETURN the VALUE attribute to a string variable in your program.

Specifying the same variable for the same attribute in both the SET and RETURN attribute lists is
acceptable, and in fact will be a common practice when the dialog’s purpose is to allow the user
to modify an existing quantity.    For this purpose, you should supply the existing value in the SET
attribute list and use the same variable in the RETURN attribute list so the user’s modification
will change the program variable.

TIMEOUT Option
If you specify the TIMEOUT option in the DIALOG statement, the program will wait only the
specified number of seconds for user input before continuing.    If the user does not push a
button in the dialog within the allotted time, the DIALOG statement will:

· Copy the current state of the dialog attributes into the variables specified in return attribute
list.

· Destroy the dialog.

· Return a selected button value of –1, if the optional variable that will receive this value has
been specified.

See Also:
OPTION BASE

DIGITIZE
Inputs digitized X and Y coordinates.

Syntax: DIGITIZE x, y [, string-name$]

where: x and y = numeric-name

Sample: DIGITIZE Xcoor,Ycoor,Stat$
IF Ready THEN DIGITIZE X,Y
View Sample:    DIGITIZE.BAS    (also found in examples directory)
Description:

A point is digitized from the GRAPHICS INPUT IS device and the coordinates of the point are
assigned to the variables. The coordinates are in default units or the units defined in a WINDOW
or SHOW statement. A DIGITIZE may be completed on the keyboard (if GRAPHICS INPUT IS is
from the keyboard) by pressing CONTINUE or ENTER. The DIGITIZE statement may optionally
specify a status string variable. This 8 byte status variable inputs the status of the GRAPHICS
INPUT IS device. The 8 byte status string variable is defined as follows:

Byte Meaning 
1 Indicates End of Stream for a device supporting

continuous point stream digitizing. Byte 1 may be used
as the pen control value in a PLOT. It is "0" if it is the
last of a continuous point stream. It is "1" otherwise,
including points from a device supporting only single
point digitizing.

2 Comma delimiter character.
3 Clip Indicator - If the character is a "0", then the point

is outside the hard-clip limits. If a "1", the point is
inside the hard-clip limits, but outside the soft-clip limits
(see CLIP). If a "2" then it is inside the soft-clip limits.

4 Comma delimiter character.
5 Tracking ON/OFF - If the character is a "0", then

tracking is off; if a "1", then tracking is on.
6 Comma delimiter character.
7-8 Button Positions. If S$ is the status string and B is the

button number you wish to test, then
BIT(VAL(S$[7,8]),B-1) returns one if B is down and zero if B
is up.

See Also:
GRAPHICS INPUT IS, READ LOCATOR, TRACK, WHERE

DIM

Dimensions REAL arrays and strings.
Syntax: DIM item [,item...]

where: item = numeric-name (bounds) [BUFFER] |
string-name$ '['length']' [BUFFER] |
string-name$ (bounds) '['length']'
bounds = [lower-bound :] upper-bound [,bounds...]
bound and length = integer constants

Sample: DIM A(100),B(10,10),C(4,2,5,8)
DIM A$[200],B$(6,10)[100]
DIM Array(-64:63,8)
DIM Hold$[365] BUFFER, Array(200) BUFFER
View Sample:    DIM.BAS    (also found in examples directory)
Description:

The DIM statement is used to declare REAL numeric array and string variables. The maximum
number of array dimensions is six and the lower bound must be less than or equal to the upper
bound value. Each dimension may contain a maximum of 32,767 elements. The default
dimension of an undeclared array is the number of subscripts found in its first occurrence, with
each dimension having the default lower bound of the value declared in OPTION BASE and an
upper bound of ten.

Each numeric array element is REAL and requires eight bytes of storage. Strings require one
byte of storage per character, plus two additional bytes. To declare a variable a BUFFER, follow
its name with the BUFFER keyword. BUFFER variables are used with the TRANSFER statement.

Any number of DIM statements are allowed, anywhere in the program; however, a DIM
statement may not appear before an OPTION BASE statement. Memory allocation is made
during prerun and cannot be dynamically deallocated. However, the dimensions can be changed
in a limited way by REDIM. Use ALLOCATE and DEALLOCATE for dynamic memory allocation.

See Also:

ALLOCATE, COM, COMPLEX, DEALLOCATE, INTEGER, OPTION BASE, REAL, REDIM, TRANSFER

DISABLE

Disables event-initiated branches.
Syntax: DISABLE

Sample: DISABLE
View Sample:    DISABLE.BAS    (also found in examples directory)
Description:

Disables all event-initiated branches, except ON END, ON ERROR, and ON TIMEOUT.

See Also:
DISABLE INTR, ENABLE, ENABLE INTR, ON, OFF

DISABLE EVENT
Prevents HTBasic from branching upon receipt of a specified event.

Syntax: DISABLE EVENT @Eventname,”Widgethandle”

Sample: DISABLE EVENT @Myscrollbar, “Changed”
DISABLE EVENT @String1, “KEYSTROKE”

Description:
Use the DISABLE EVENT keyword to temporarily suspend the effects an event would have on
your program.    For example, you may want the program to accomplish some task without
interruption.    After that task is accomplished, you can use the ENABLE EVENT keyword to re-
enable the program’s sensitivity to that event.

While the event is disabled, it can still be logged.    Then, when it is re-enabled the branch will be
taken.    Only one occurrence of the event will be logged.

See Also:
DISABLE, DISABLE INTR, ENABLE, ENABLE EVENT, ENABLE INTR

DISABLE INTR

Disables interrupts from the specified interface.
Syntax: DISABLE INTR interface-select-code

Sample: DISABLE INTR 5
DISABLE INTR Isc
View Sample:    DISABLE INTR.BAS    (also found in examples directory)
Description:

DISABLE INTR instructs the interface to disable interrupt generation.

See Also:
DISABLE, ENABLE, ENABLE INTR, ON INTR, OFF INTR

DISP

Displays items on the CRT display line.
Syntax: DISP [item-list [{,|;}]]

DISP USING image [; item-list]

where: item-list = item [{,|;}item-list]
item = numeric-expression | numeric-array(*) |
string-expression | string-array$(*) | TAB(column)
column = numeric-expression rounded to an integer
image = line-number | line-label | string-expression
See IMAGE for image syntax.

Sample: DISP Display$;

DISP TAB(8),Head,TAB(25),Descrip
DISP USING "5Z.DD";Figures
DISP USING Report;List(2),List(3),List(4)
View Sample:    DISP.BAS    (also found in examples directory)

Description:
Without USING
If USING is not specified, the standard numeric format will be used to display items. The
standard numeric format will display a number in floating point form rounded to 12 digits if its
absolute value is in the range 1E-4 to 1E+6. The number will be displayed in scientific notation if
it is outside this range.

The punctuation following the item to be displayed determines the item's display field. The
compact field is used if a semicolon follows the item; and the default display field is used if a
comma follows the item.

In both compact and default display form, numbers are displayed with one leading blank for
positive numbers or the minus sign for negative numbers. In compact field form numeric items
are displayed with one trailing blank and string items are displayed with no leading or trailing
blanks. The default display form displays items with trailing blanks to fill to the beginning of the
next 10-character field. A complex number is displayed in rectangular form, first the real part,
then an extra blank and finally the imaginary part.

An array may be displayed in row-major order using the full-array-specifier. If punctuation
follows an array then the array elements are displayed either in compact field (if semicolon) or
default display field (if comma) and additionally the automatic EOL sequence will be suppressed.

With USING
See IMAGE for a complete explanation of the image list. The items specified in the image list are
acted upon as they are encountered. Each image list item should have a matching display item.
Processing of the image list stops when no matching display item is found. Conversely, the
image list is re-used starting at the beginning to provide matches for all remaining display items.
The TAB function and any trailing punctuation may not be specified with USING.

Control Characters
The following control characters have a special meaning when used in DISP statements:

Character Meaning
CTRL-G, CHR$(7) sounds the bell.
CTRL-H, CHR$(8) moves the cursor back 1 space.
CTRL-L, CHR$(12) clears the display line (form feed).
CTRL-M, CHR$(13) moves the cursor to column 1 and the display

line is cleared by the next character sent to
the display (unless it is a CR).

Scrolling
If the data displayed on the DISP line is too long, the data is scrolled to the left so that the final
portion is completely displayed. If the DISP statement ends with a comma or semicolon, the
next DISP statement concatenates data on the end of the existing data. Again, the data is
scrolled if necessary to display the final portion of the data.

See Also:
IMAGE, LABEL, OUTPUT, PRINT

DISPLAY FUNCTIONS

Controls the display of control characters on the CRT.
Syntax: DISPLAY FUNCTIONS { ON | OFF }

Sample: DISPLAY FUNCTIONS OFF
IF Ctrlchar THEN DISPLAY FUNCTIONS ON
View Sample:    DISPLAY FUNCTIONS.BAS    (also found in examples directory)
Description:

It is possible to disable the effect of the attribute characters on the CRT device, displaying them
instead of executing them. This is useful when debugging OUTPUT. The DISPLAY FUNCTIONS
ON statement causes all control characters to be displayed but not executed. The only
exception is carriage return, CHR$(13), which is first displayed and then the print cursor is
moved to column one of the next line. DISPLAY FUNCTIONS OFF returns execution of attribute
characters to normal.

This function is the equivalent to pressing the DISPLAY FCTNS key or to executing the command,
CONTROL CRT,4;State.

See Also:
ALPHA HEIGHT, ALPHA PEN, CLEAR LINE, CLS, KBD CMODE, KEY LABELS

DIV

Returns the quotient of an integer divide operation.
Syntax: dividend DIV divisor

where: dividend and divisor = numeric-expressions

Sample: PRINT "Miles =";Feet DIV 5280
View Sample:    DIV.BAS    (also found in examples directory)
Description:

The result of DIV is an INTEGER if both arguments are INTEGER and REAL otherwise. If the
divisor is zero, an error is returned. The definition of A DIV B is

A DIV B = FIX(A/B).

See Also:
MOD, MODULO

 DLL GET
Sets up a Dynamic Link Library (DLL) function to use in the program.

Syntax:

DLL GET “returntype dllname:functionname” AS “alias”
where:

returntype is one of the following: VOID, SHORT, LONG, DOUBLE, CHAR, CHARPTR, VARIABLE.

dllname must be the name of a loaded DLL.

functionname is the name of the function in the DLL you wish to call, or a variable exported from the DLL.

All Function/Variable names must use valid HTBasic function name conventions or an alias using HTBasic
function name conventions must be provided. The DLL loader will allow you to load two functions with the
same name as long as they are in different DLL’s. However, without an alias specified, there is no way to
differentiate which DLL you are trying to call and the DLL loader will always call the first function by that name.
You cannot have an HTBasic function with the same name as a DLL function.

alias is an optional function/variable name to use within HTBasic.
Sample:

DLL GET “VOID Pipecalc:Xsection” AS “Cross”
DLL GET “SHORT Pipecalc:Xsection” AS “Cross”
DLL GET “LONG Pipecalc:Xsection” AS “Cross”
DLL GET “DOUBLE Pipecalc:Xsection” AS “Cross”
DLL GET “CHAR Pipecalc:Xsection” AS “Cross”
DLL GET “CHARPTR Pipecalc:Xsection” AS “Cross”
DLL GET “VARIABLE Pipecalc:Xsection” AS “Cross”

Description:
The DLL GET sets up a Dynamic Link Library (DLL) function to use in the program.

See Also:
DLL LOAD, DLL READ, DLL UNLOAD, DLL WRITE, LIST DLL

DLL LOAD
Specifies the Dynamic Link Library (DLL) to LOAD into the program.

Syntax:
DLL LOAD “dllname”

where:
dllname must be the name of a DLL to load.

Sample:
DLL LOAD “Pipecalc”
DLL LOAD “Flowtrak”

Description:
The DLL LOAD specifies the Dynamic Link Library (DLL) to LOAD into the program.

See Also:
DLL GET, DLL READ, DLL UNLOAD, DLL WRITE, LIST DLL

DLL READ
Retrieves a Dynamic Link Library (DLL) variable to use in the program.

Syntax:

DLL READ “varname”;basic variable

where:

varname is any variable name within the DLL.

basic variable is any legal variable name to use within HTBasic.

Sample:

DLL READ ”Xsection”;Crosec
DLL READ ”Flowrate”;Torrant

Description:

The DLL READ reads a loaded Dynamic Link Library (DLL) variable value into a BASIC variable.

See Also:

DLL GET, DLL LOAD, DLL UNLOAD, DLL WRITE, LIST DLL

DLL UNLOAD
Specifies the Dynamic Link Library (DLL) to UNLOAD from the program.

Syntax:

DLL UNLOAD “dllname”
or
DLL UNLOAD ALL

where:

dllname must be the name of a DLL to unload.

Sample:

DLL UNLOAD ALL !Removes all loaded DLLs
DLL UNLOAD “Flowtrak” !Removes Flowtrack.dll

Description:

The DLL UNLOAD specifies the Dynamic Link Library (DLL) to UNLOAD from the program.

See Also:

DLL GET, DLL LOAD, DLL READ, DLL WRITE, LIST DLL

DLL WRITE
Sets a Dynamic Link Library (DLL) variable to use in the program.

Syntax:

DLL WRITE “varname”;value

where:

varname is any variable name within the DLL.

value is any numeric value.

Sample:

DLL WRITE “Xsection”;3.559
DLL WRITE “Flowrate”;20.9

Description:

The DLL WRITE writes the value of a BASIC variable into a Dynamic Link Library (DLL) variable.

See Also:

DLL GET, DLL LOAD, DLL READ, DLL UNLOAD, LIST DLL

DOT

Returns the dot product of two numeric vectors.
Syntax: DOT(vector, vector)

Sample: Dotproduct=DOT(Vecx,Vecy)
PRINT DOT(X,Y)
View Sample:    DOT.BAS    (also found in examples directory)
Description:

The dot, scalar or inner product of two vectors is defined to be the product of the magnitudes of
the vectors and the angle between them. This is equivalent to the sum of the products of the
components of the two vectors.

See Also:
BASE, DET, DIM, MAT, RANK, REDIM, SIZE, SUM

DRAW

Draws a line to the X,Y location.
Syntax: DRAW x-position, y-position

where: x-position, y-position = numeric-expressions

Sample: DRAW 50,50
DRAW 10,75
DRAW Xx,Yy
View Sample:    DRAW.BAS    (also found in examples directory)
Description:

A line is drawn from the current position to the specified coordinates using the current line type
and pen number. The DRAW statement can be used in conjunction with the MOVE statement.
DRAW always begins with the "pen down" and ends with the pen down. MOVE always lifts the
pen before moving to the specified new position. See also PLOT which incorporates pen control
into one statement through its syntax. The x-position and y-position arguments express a
coordinate in the current SHOW or WINDOW units.

If the arguments of a DRAW statement specify a destination point which is outside the clipping
rectangle, a theoretical draw to that point is executed. Only that portion of the vector which lies
inside the clipping rectangle is drawn. The portion of the vector which lies outside is clipped at
the edge of the clipping rectangle.

A DRAW to the current position draws a point. The PIVOT statement affects the DRAW
statement.

See Also:
CLIP, IDRAW, IMOVE, IPLOT, LINE TYPE, MOVE, PIVOT, PLOT, RPLOT, SHOW, VIEWPORT, WINDOW

DROUND

Rounds a numeric-expression to the specified number of digits.
Syntax: DROUND(numeric-expression, digits)

where: digits = numeric-expression rounded to an integer.

Sample: Data=DROUND(Sample,10)
PRINT "Current =";DROUND(Amps,4)
View Sample:    DROUND.BAS    (also found in examples directory)
Description:

If the number of digits is greater than fifteen then numeric-expression is not rounded; if the
number of digits is less than one then DROUND returns zero.

See Also:
CINT, FIX, FRACT, INT, PROUND, REAL

DUMP

Copies the contents of the display to a printing device.
Syntax: DUMP ALPHA    [source [TO #device-selector]]

DUMP GRAPHICS [source [TO #device-selector]]

where: source = device-selector

Sample: DUMP ALPHA
DUMP ALPHA #702
DUMP GRAPHICS #Dev
DUMP GRAPHICS Color TO #701
View Sample:    DUMP.BAS    (also found in examples directory)
Description:

The contents of the ALPHA or GRAPHICS screen is copied to a printing device. The source, by
default, is the CRT. If any other device is specified then no DUMP occurs. The DUMP is sent to
the device specified or to the DUMP DEVICE IS device. Either screen can also be dumped by
pressing the DUMP GRAPHICS or DUMP ALPHA keys. To avoid dumping the pseudo-runlight in the
lower right-hand corner of the screen, use RUNLIGHT OFF before dumping the screen.

For a DUMP ALPHA, alphanumeric characters compatible with any ASCII printer are sent to the
printer.

For a DUMP GRAPHICS, graphics are sent to the printer in the printer language specified by
the CONFIGURE DUMP statement. If no CONFIGURE DUMP is executed, the "WIN-DUMP" driver is
used. If MERGE ALPHA WITH GRAPHICS is current, then ALPHA text will also be dumped to the
printer as part of the graphics data.

Porting Issues
HTBasic supports several types of printers. For this reason, you may need to tell HTBasic what
language to use before doing the DUMP. The default language is "WIN-DUMP." If you are going
to make screen dumps to another type of printer, you must first use the CONFIGURE DUMP
statement. You may find it convenient to include this statement in your AUTOST file. Chapter 7,
"Printer and Image File Drivers," of the Installing and Using manual explains what languages are
supported and how to select them.

See Also:
CONFIGURE DUMP, DUMP DEVICE IS

DUMP DEVICE IS

Defines the printing device used by DUMP.
Syntax: DUMP DEVICE IS destination [,EXPANDED] [;APPEND]

where: destination = device-specifier | file-selector

Sample: DUMP DEVICE IS 10
DUMP DEVICE IS "PICTURE.PCX",EXPANDED
DUMP DEVICE IS "| lpr"
View Sample:    DUMP DEVICE IS.BAS    (also found in examples directory)
Description:

DUMP DEVICE IS specifies what destination receives the dump data when DUMP ALPHA or
DUMP GRAPHICS is executed without a device selector. GINIT resets the destination to the
default, which is PRT. Use the CONFIGURE DUMP statement to specify the graphic printer
language used.

The number of colors produced in the dump depends on both the display and printer drivers.
See CONFIGURE DUMP for more information.

Destinations
The output can be sent to a device (usually a printer), file or pipe. If the destination is a file, it
must be an ordinary file or a BDAT file.

Options
If EXPANDED is included, the image is rotated by 90 degrees. Depending on the screen and
printer types, the image may also be printed larger than when EXPANDED is not included.

If APPEND is specified and the DUMP is to a file, the file position is moved to the end-of-file
before each DUMP. For some DUMP types, multiple images in a file are not supported. For
example, the PCX file definition only supports one image per file. If APPEND is specified in these
cases, the result is undefined. If APPEND is not specified, the file is overwritten with each
DUMP.

See Also:
CONFIGURE DUMP, DUMP, PLOTTER IS, RUNLIGHT

DVAL

Converts a binary, octal, decimal or hexadecimal string to a real number.
Syntax: DVAL(string-expression, radix)

where: radix = numeric-expression rounded to an integer

Sample: Value=DVAL(Binary$,Two)
PRINT DVAL("EFA50",16)
View Sample:    DVAL.BAS    (also found in examples directory)
Description:

DVAL is like VAL, in that a number in string form is converted to numeric form. Unlike VAL, which
can only convert decimal numbers, DVAL can convert numbers in binary, octal, decimal and
hexadecimal.

The string expression contains the number to be converted and the radix must be either 2, 8, 10
or 16. The characters in the string must be legal digits in the specified radix. For example, a
binary number can only have characters "0" and "1". Only decimal numbers are allowed to have
a minus sign preceding them.

The number expressed in the string is first converted to a 32 bit integer. If the most significant
bit is set, the result will be negative. Thus, the string must represent a number within the range
of a 32 bit signed integer. The range restrictions are as follows:

Radix Legal Range
binary 0 through 11111111111111111111111111111111
octal 0 through 37777777777
decimal -2147483648 through 2147483647
hexadecimal 0 through FFFFFFFF

See Also:
DVAL$, IVAL, IVAL$, VAL, VAL$

DVAL$

Converts a number to a binary, octal, decimal or hexadecimal string.
Syntax: DVAL$(whole-number, radix)

where: whole-number = numeric-expression rounded to a whole number
radix = numeric-expression rounded to an integer

Sample: Hex$=DVAL$(Number,Sixteen)
PRINT DVAL$(Quantity,8)
View Sample:    DVAL$.BAS    (also found in examples directory)
Description:

DVAL$ is like VAL$, in that a numeric value is converted to string form. Unlike VAL$, which
always expresses numbers in decimal form, DVAL$ can also express numbers in binary, octal,
decimal and hexadecimal form.

Whole-number contains the number to be converted which must be in the range of a 32 bit
two's complement integer, -2,147,483,648 through 2,147,483,647. Radix must be either 2, 8, 10
or 16.

The converted numbers have leading zeros as necessary to fill unused digit positions. A minus
sign is only produced for decimal numbers. The range of numbers produced is the same as those
accepted by DVAL.

See Also:
DVAL, IVAL, IVAL$, VAL, VAL$

EDIT

Puts you into program EDIT mode.
Syntax: EDIT [target [,increment]]

EDIT SUB subprogram-name [,increment]
EDIT FN function-name [,increment]

where: target = line-number|line-label|SUB name|FNname
increment = integer constant in the range 1-32766.

Sample: EDIT
EDIT 100,10
EDIT Alabel
EDIT SUB Fire62
EDIT FNPete
EDIT FNOranges

Description:
In the syntax above, the space between FN and the function-name is shown for readability.
When you type the statement, do not include the space after FN.

The following information applies only to the HTBasic Legacy Editor. For full documentation on
the new HTBasic Windows Editor, please see the Installing and Using manual.

The EDIT command starts the full screen program editor. It automatically generates and
maintains the program line numbers. The default increment for line numbers is 10, but may be
specified with the increment value.

If you are editing an existing program, the current edit line will be either the last line edited, the
last line with an error or the line specified in the EDIT command. You may specify either a line
number, line label, SUB program name, or DEF FN function name. If you are editing a new
program, the first line number will be 10 unless a line number is specified.

EDIT mode is ended by pressing CLR SCR (HOME on a PC), PAUSE, RUN or STEP keys. It can also
be terminated by entering a CAT or LIST command. EDIT can only be executed from the
keyboard. It cannot be included in a program.

While in EDIT mode, the arrow keys, LEFT WORD, RIGHT WORD, PREV, NEXT, BOL, EOL, BEGIN
and END keys can be used to move around the program. The INS CHR key toggles the overstrike
mode to insert mode and back again. This remains in effect while on the same program line and
is reset to overstrike mode when a new line is displayed. The DEL CHR key deletes the character
under the cursor. The DEL LEFT key deletes the character to the left of the cursor.

Using the Legacy Editor to insert a line between two program lines or before the first line of the
program, position the cursor on the line following the place you wish to insert the new line and
then press the INS LN key. If necessary, the program will be partially renumbered and a new line
number will be generated for you. You may insert as many program lines as is required. To end
the insert line mode press the UP, DOWN, PREV, NEXT, BEGIN, END or INS LN keys. To delete a
line, position the cursor on the line you wish to delete and press the DEL LN key.

In the Legacy Editor, the changes to a line are not made permanent until you press ENTER. If
you wish to abort the changes, press an arrow key or any other key that moves the cursor to
another line.

Keyboard commands can still be entered in EDIT mode by first deleting the automatic line
number and then entering the command. To delete the line number, backspace over it and then
type over the top of it or use the BACKSPACE key to delete back over the top of it or use the END
key to clear the current line.

Using keyboard commands you can move a block of text from one place in the program to
another (MOVELINES) or copy a block of text from one place to another (COPYLINES). Both of
these commands transparently handle any line reference renumbering.

FIND can be used to search for a string of characters. CHANGE can be used to find a string and
replace it with another string.

INDENT can be used to automatically indent program constructs. REN can be used to renumber
part of or the entire program. DELSUB is used when a subprogram needs to be deleted.

Use "HELP #" to display a list of the keyboard key mappings.

See Also:
CHANGE, COPYLINES, DEL, DELSUB, EDIT KEY, FIND, INDENT, MOVELINES, REN, SECURE, STORE,
XREF

EDIT KEY
Puts you into softkey EDIT mode.

Syntax: EDIT KEY key-number

where: key-number = integer constant in the range 0-23.

Sample: EDIT KEY 3

Description:
The EDIT KEY command edits softkey macros. It is entered by typing EDIT KEY n (where n is
the softkey number), or by pressing EDIT, the softkey you wish to edit and then the ENTER key.
The current definition for the requested key is displayed and the normal editing keys are used to
modify the definition (see EDIT). When you are finished press ENTER to save the key definition.

A softkey macro is not available while an ON KEY statement is currently active for that key.

See Also:
EDIT, KBD CMODE, KEY LABELS, KEY LABELS PEN, LIST KEY, LOAD KEY, OFF KEY, ON KEY, READ
KEY, SCRATCH, SET KEY, STORE KEY, USER KEYS

ENABLE

Enables all event-initiated branches suspended by DISABLE.
Syntax: ENABLE

Sample: ENABLE
Description:

ENABLE does not affect ON END, ON ERROR and ON TIMEOUT.

See Also:
DISABLE, DISABLE INTR, ENABLE INTR, ON, OFF

ENABLE EVENT
Enables HTBasic for Windows to branch upon receipt of a specified event.

Syntax:

ENABLE EVENT @Eventname, Widgethandle

Sample:

ENABLE EVENT @Myscrollbar, “CHANGED”
ENABLE EVENT @String1, “KEYSTROKE”

Description:

If an ON EVENT statement has been defined for a widget and an event, when the event occurs an event-
initiated branch results. Use DISABLE EVENT to temporarily suspend the effects an event would have on your
program.

For example, you may want the program to accomplish some task without interruption. After that task is
accomplished, you can use ENABLE EVENT to re-enable the program’s sensitivity to that event.

While the event is disabled, it can still be logged. Then, when it is re-enabled, the branch will be taken. Only one
occurrence of the event will be logged. You must have at least one currently defined event branch in your
program to accept inputs from the mouse or keyboard. The events can all be disabled and still accept inputs.

See Also:

DISABLE, DISABLE EVENT, DISABLE INTR, ENABLE INTR, ON, OFF

ENABLE INTR

Enables interrupts from a specified interface.
Syntax: ENABLE INTR interface-select-code [;enable-mask]

where: enable-mask = numeric-expression rounded to an integer.

Sample: ENABLE INTR 12
ENABLE INTR Isc;Bitmask
View Sample:    ENABLE INTR.BAS    (also found in examples directory)
Description:

This command enables interrupts from a specified interface for event-initiated branching. An
optional bit mask is stored in the interface interrupt-enable register. The default bit mask is the
previous bit mask for that interface, or if there is no previous bit mask then a bit mask of all
zeros is used. The meaning of the bit mask depends on the interface; consult the interface
documentation.

See Also:
DISABLE, DISABLE INTR, ENABLE, ON, OFF

END

Marks the end of the program.
Syntax: END

View Sample:    END.BAS    (also found in examples directory)
Description:

An END statement is required at the end of the main program. Any subprograms follow the main
program END statement. Comments may also follow the main program END statement.

See Also:
FNEND, SUBEND, PAUSE, STOP

ENTER

Inputs data and assigns it to variables.
Syntax: ENTER source [USING image] [;item-list]

where: source = @io-path [,record-number] |
device-selector |
string-name$ [(subscripts)]
image = line-number | line-label | string-expression
See IMAGE for the image string syntax.
item-list = item [{,|;} item-list]
item = numeric-name [{(subscripts) | (*)}] |
string-name$ [{[(subscripts)] '['sub-string']' | (*)}]

subscripts = subscript [,subscript...]

Sample: ENTER 702;Numeral,Alph$
ENTER Dev;P1;P2;P3;P4

ENTER @Picto,Pstr;Array(*)
ENTER @Access USING 20;Lexical$(Def)
View Sample:    ENTER.BAS    (also found in examples directory)

Description:
Numeric data, array elements or character strings are input from a specified source and the
values are assigned to variables. A number builder changes ASCII data to numeric data for
assignment to a numeric variable. The number builder ignores blanks and leading non-numeric
characters and terminates on the first character received with EOI true or on the first non-
numeric character. Arrays may be entered, in row major order, using the full array specifier,
"(*)".

String items are terminated with either a line-feed character, a carriage-return/line-feed
character pair, an EOI signal or upon filling the dimensioned length of the string. The line-feed or
carriage-return/line-feed characters are not entered into the string.

Complex numbers are entered in rectangular form, real part first, followed by imaginary part.
The two parts should be separated by EOI or by a non-numeric character.

Sources
File.    A file ASSIGNed to an I/O path may be used as the source. An ASCII file is read as ASCII
characters. With FORMAT ON, BDAT and ordinary files are also read as ASCII characters. With
FORMAT OFF, BDAT and ordinary files are in internal format (see OUTPUT for a description of
internal formats). All files may be accessed serially and additionally, BDAT and ordinary files may
be accessed randomly by including a record number.

String.    A string may be used as the source. ENTER begins at the beginning of the string and
reads serially. Data is assumed to be in FORMAT ON format.

Device.    A device-selector or I/O path may be used as the source to enter items from a device.
The default system attributes are used if the source is a device-selector. The ASSIGN statement
determines the attributes used if the source is an I/O path. If the device selector is 1, then the
source is the CRT. If the device selector is 2, then the source is the keyboard. To terminate a
keyboard entry, and append a carriage-return/line-feed, press ENTER. To terminate an entry,
with no characters appended, press CONTINUE.

Buffer.    A buffer ASSIGNed to an I/O path may be used as the source. The ASSIGN statement
determines the attributes used. The buffer empty pointer points to the beginning of the data to
be removed and ENTER ed. The empty pointer is updated as data is ENTERed.

With USING
See IMAGE for a complete explanation of the image list. The items specified in the image list are
acted upon as they are encountered. Each image list item should have a matching enter item.
Processing of the image list stops when no matching enter item is found. Conversely, the image
list is reused starting at the beginning to provide matches for all remaining enter items. FORMAT
ON is used in connection with ENTER USING, even if FORMAT OFF has been specified.

Records
When entering from a file, you may specify a record number. The first record in the file is record
1. The record size for BDAT files is specified when the file is created and defaults to 256 bytes.
For other file types the record size is 1; thus the record number is actually the offset into the file.
The first byte of the file is at offset 1. When a record number is specified and the record size is
not 1, if the ENTER requires more data than a single record, an End of Record error or event
occurs.

See Also:
IMAGE, INPUT, LINPUT, OUTPUT, PRINT

ENVIRON$

Returns information from the operating system environment.
Syntax: ENVIRON$(string-expression | numeric-expression)

Sample: PRINT "Your path is ";ENVIRON$("PATH")
LOAD ENVIRON$("HTB")&"\autost",1
A$(I)=ENVIRON$(I)
View Sample:    ENVIRON$.BAS    (also found in examples directory)
Description:

The ENVIRON$ function returns the value assigned to an operating system environment
variable. You may choose which environment variable to read in one of two ways. If you know
the name of a variable, you can specify it by name and its definition will be returned. If the
variable does not exist or if the definition is blank, a zero length string is returned. You can also
specify a number, in which case both the corresponding variable, an equal sign and the
definition are returned. The first variable is number 1. The names of environment variables are
case insensitive.

Porting to HP BASIC:
ENVIRON$ is a new HTBasic function that is not available in HP BASIC. It should not be used in
programs that must be ported back to HP BASIC.

See Also:
COMMAND$, EXECUTE, SYSTEM$

ERRL

Compares a line number with ERRLN.
Syntax: ERRL(line-number | line-label)

Sample: IF ERRL(850) THEN CALL Route_error
IF ERRL(1260) THEN GOTO 5630
IF NOT ERRL(Record) THEN Lock
View Sample:    ERRL.BAS    (also found in examples directory)
Description:

ERRL returns a 1 if ERRLN is equal to the specified line (in the current context) and 0 otherwise.
ERRL can be used in IF statements to direct program flow in an error handling routine. ERRL is
not keyboard executable.

See Also:
CAUSE ERROR, CLEAR ERROR, ERRLN, ERRM$, ERRN, ERROR RETURN, ERROR SUBEXIT, OFF
ERROR, ON ERROR

ERRLN

Returns the program line number on which the last error occurred.
Syntax: ERRLN

Sample: PRINT ERRLN
Error1=ERRLN
View Sample:    ERRLN.BAS    (also found in examples directory)
Description:

The number of the program line on which the most recent error occurred is returned. If no error
has occurred, the ERRLN function returns 0.

See Also:
CAUSE ERROR, CLEAR ERROR, ERRL, ERRM$, ERRN, ERROR RETURN, ERROR SUBEXIT, OFF
ERROR, ON ERROR

ERRM$

Returns the error message text of the last error.
Syntax: ERRM$

Sample: OUTPUT @Errorlog;ERRM$
PRINT ERRM$
View Sample:    ERRM$.BAS    (also found in examples directory)
Description:

ERRM$ returns the line number (ERRLN), error number (ERRN) and associated error message
text. The null string is returned if no error has been generated since start-up, LOAD, GET,
SCRATCH or CLEAR ERROR.

Porting Issues
HTBasic error messages are usually similar to those in HP BASIC. Programs that depend on
ERRM$ returning the exact same message as HP BASIC should be modified accordingly. In
particular, where an HP BASIC error message has seemed less descriptive than it should be,
HTBasic returns a more descriptive message.

See Also:
CAUSE ERROR, CLEAR ERROR, ERRL, ERRLN, ERRN, ERROR RETURN, ERROR SUBEXIT, OFF
ERROR, ON ERROR

ERRN

Returns the last error number.
Syntax: ERRN

Sample: A=ERRN
IF ERRN=75 THEN CALL Exroute
PRINT "Execution Error Number = ";ERRN
10 ON ERROR GOTO 90
20 PRINT X^Y
. . .
80 STOP
90 IF ERRN=27 THEN PRINT "Oops!"
View Sample:    ERRN.BAS    (also found in examples directory)

Description:
The last program execution error number is returned; or if no error has occurred, a zero is
returned. ERRNmay be used in IF statements to direct program flow in an error handling routine.

Porting Issues
Any error number of 2000 or greater is an HTBasic extension to Rocky Mountain Basic. Not all
errors that can occur under HP BASIC can occur under HTBasic. Any error number greater than
10,000 is a Windows error passed to the error handler in HTBasic directly from Windows.

In general, the error numbers returned for errors are the same as those returned by HP BASIC.
But in some instances the operating system or environment in which HTBasic runs makes it
impossible or impractical to return the same number.

Appendix A contains a list of errors that can occur.

See Also:
CAUSE ERROR, CLEAR ERROR, ERRL, ERRLN, ERRM$, ERROR RETURN, ERROR SUBEXIT, OFF
ERROR, ON ERROR

ERROR RETURN

Returns program execution to the line following the most recent error.
Syntax: ERROR RETURN

Sample: IF Done THEN ERROR RETURN
View Sample:    ERROR RETURN.BAS    (also found in examples directory)
Description:

ERROR RETURN should only be used in connection with ON ERROR GOSUB. A regular RETURN
causes the line which generated the error to be re-executed. ERROR RETURN skips the line
which generated the error and continues execution with the next line.

See Also:
CAUSE ERROR, CLEAR ERROR, ERRL, ERRLN, ERRM$, ERRN, ERROR SUBEXIT, OFF ERROR, ON
ERROR, RETURN

ERROR SUBEXIT

Returns subprogram execution to the line following the most recent error.
Syntax: ERROR SUBEXIT

Sample: ERROR SUBEXIT
IF Done THEN ERROR SUBEXIT
View Sample:    ERROR SUBEXIT.BAS    (also found in examples directory)
Description:

ERROR SUBEXIT should only be used in connection with ON ERROR CALL. A regular SUBEXIT
causes the line which generated the error to be re-executed. ERROR SUBEXIT skips the error
line and continues execution with the line following the line in error.

See Also:
CAUSE ERROR, CLEAR ERROR, ERRL, ERRLN, ERRM$, ERRN, ERROR RETURN, OFF ERROR, ON
ERROR, SUBEXIT

EXECUTE

Executes an operating system command.
Syntax: EXECUTE [command] [;option [,option]...]

where: command = string-expression
option = {WAIT OFF | SAVE ALPHA OFF | RETURN numeric-variable}

Sample: EXECUTE "DIR"
EXECUTE "SOL.EXE"
View Sample:    EXECUTE.BAS    (also found in examples directory)
Description:

The default command interpreter for your operating system is invoked and given the command
specified for execution. When the command has completed, control is returned to HTBasic. If the
command argument is not specified then the default command interpreter is invoked, you are
given a prompt and you may issue one or more commands. You must terminate the command
interpreter to return to HTBasic. To return, type "EXIT".

After the command has completed execution, if the WAIT OFF option is not specified the
message "Hit any key to continue" will be displayed and HTBasic waits until you press any
keyboard key. If the WAIT OFF option is specified, control immediately returns to the next
HTBasic statement.

If the SAVE ALPHA OFF option is not specified, the screen is cleared before the command is
executed and the screen is restored after the command has finished. If the SAVE ALPHA OFF
option is specified, the screen is not cleared or restored. Messages written to the screen will
write over the current screen. You can, however, redirect the output messages to a file and use
the WAIT OFF option to prevent writing over the screen.

If the RETURN option is specified, the executed program's termination error value is returned in
the numeric variable. When control is returned to HTBasic, an attempt is made to service any
events which occurred while the command interpreter had control.

When operating under a window system, the WAIT OFF and SAVE ALPHA OFF options are
ignored. To prevent the appearance of a DOS box when running a Windows application use the
following syntax:

EXECUTE CHR$(13) & "appname.exe"

Usage Notes
Windows NT    Under Windows NT, CMD is the command interpreter used if no command is
specified. To execute a built-in command like "DIR", use "cmd /c DIR". An extension of .EXE is
assumed for the command; to execute a .BAT, .CMD or .COM file, include the extension.

See Also:
QUIT, QUITALL

EXOR

Performs a Logical exclusive OR of two expressions.
Syntax: numeric-expression EXOR numeric-expression

Sample: I=1 EXOR 0
IF Former EXOR Latter THEN Do
IF A<B EXOR C=D THEN PRINT "ONLY ONE CONDITION IS TRUE"
View Sample:    EXOR.BAS    (also found in examples directory)
Description:

A EXOR B returns a one if exactly one of A or B is non-zero and a zero if A and B are both zero or
both non-zero.

See Also:
AND, OR, NOT

EXP

Returns "e" raised to a power.
Syntax: EXP (numeric-expression)

Sample: X1=EXP(Y*10)
X2=EXP(-Y^3)
View Sample:    EXP.BAS    (also found in examples directory)
Description:

EXP returns the value of "e" raised to the power specified by the numeric expression. "e" is the
base of the Naperian or Natural logarithm. Its value is approximately 2.718 281 828 459 05.

COMPLEX Arguments
EXP accepts either a COMPLEX or REAL argument and returns a value of the same type. For
COMPLEX arguments the real and imaginary parts of EXP(Z) are calculated (using real
arithmetic) as

REAL(EXP(Z)) = EXP(REAL(Z))*COS(IMAG(Z))
IMAG(EXP(Z)) = EXP(REAL(Z))*SIN(IMAG(Z))

IMAG(Z) specifies radians, regardless of the current trigonometric mode. Notice that
intermediate values generated during the calculation of the function can cause over- or
underflow errors for very large or small values of Z.

See Also:
LOG, LGT

FBYTE

Checks for first byte of a two byte character.
Syntax: FBYTE(string)

Sample: PRINT FBYTE(A$)
IF FBYTE(A$[I]) THEN PRINT "Two Bytes"
Description:

FBYTE is used with SBYTE to determine whether a character is one or two bytes long. FBYTE
returns a one if the first byte of the string argument is in the valid range for the first byte of a
two byte character.

See Also:
CVT$, SBYTE

FIND

Searches for specified characters in a program.
Syntax: FIND "characters" [IN start [,end]]

where: characters = string-literal
start and end = line-number | line-label

Sample: FIND "PRINT"
FIND "Xx=" IN Math,Result

Description:
FIND allows you to search for arbitrary strings in the program. Once found, the program line
may be modified or deleted. The search continues after pressing ENTER or DEL LN. If no
modification or deletion is needed, pressing CONTINUE searches for the next occurrence. You
may exit FIND mode by pressing any other function key. The string literal must match exactly.
The case of characters is significant.

The FIND command from the HTBasic Windows editor input line bings up the FIND window and
fills fields with old and new values. All other options are ignored.

If start is specified, the search begins with that line. If the line doesn't exist, the line immediately
after that line number is used. If a non-existent line label is specified, an error will be reported. If
start is not specified, searching will begin with the current line.

If end is specified, the search ends with that line. If the line doesn't exist, the line immediately
before that line number is used. If a non-existent line label is specified, an error will be reported.
If end is not specified, searching will end with the last line.

FIND is not allowed while a program is running, but it may be used when the program is paused.
FIND is aborted if a change exceeds the maximum allowable length of a program line or if a line
number is altered. FIND can only be executed from the keyboard. It cannot be included in a
program.

See Also:
CHANGE, COPYLINES, DEL, DELSUB, EDIT, INDENT, MOVELINES, REN, SECURE, XREF

FIX

Truncates a value to INTEGER.
Syntax: FIX (numeric-expression)

Sample: DRAW FIX(X),Y
View Sample:    FIX.BAS    (also found in examples directory)
Description:

The effect of FIX is to remove the fractional part of its argument.

Notice the differences among FIX, CINT and INT. FIX returns the closest integral value between
the REAL value and zero. CINT converts a REAL value to an INTEGER by substituting the closest
INTEGER to the value. FIX returns the closest integral value between the REAL value and zero.
INT returns the closest integral value between the REAL value and negative infinity. Also, CINT
actually changes the type from REAL to INTEGER while INT and FIX return integral results
without changing the type. The following table helps illustrate these differences:

Value x CINT(x) FIX(x) INT(x)
2.6 3 2.0 2.0
2.2 2 2.0 2.0
-2.2 -2 -2.0 -3.0
-2.6 -3 -2.0 -3.0

Porting to HP BASIC:
FIX is a new HTBasic function that is not available in HP BASIC. It should not be used in
programs that must be ported back to HP BASIC.

See Also:
CINT, DROUND, FRACT, INT, PROUND, REAL

FN

Executes a user-defined function.
Syntax: FN function-name[$] [(argument [,argument...])]

where: argument = pass-by-reference | pass-by-value
pass-by-reference =
@io-path |
variable-name[$][(*)] |
string-array-element |
numeric-array-element

pass-by-value =
(variable-name[$]) |
(numeric-array-element) |
(string-array-element) |
numeric-constant |
numeric-expression
"string-literal" |
string-name$ [(subscripts)] sub-string |
string-expression

Sample: PRINT "New Value is";FNRate(Y)

Result$=FNCheck$(List$)
Pass=FNDecode(Code,(Express),@Line)
Rotate=FNTranslate(Comp(Trans1+Trans2),Table(*))

View Sample:    FN.BAS    (also found in examples directory)

Description:
A function subprogram is defined by DEF FN and called by referencing FNname. The supplied
arguments, if any, may be used in the function's calculations. Upon completion it returns either
a string or a numeric value depending on the type of the function name.

Calling a function subprogram changes the program context. Function subprograms may be
called recursively. If there is more than one function with the same name the function with the

lowest line number is called.

If an expression is defined and evaluated several times throughout a program, it is convenient to
define it as a function and then specify the function name instead of the expression. A function
can be used anywhere expressions are allowed.

Function subprograms can be included in expressions involved in keyboard calculations. For
example, the return value of a function can be displayed by typing the function name and then
pressing ENTER.

The arguments specified in the function reference must be of the same type as the parameters
in the defining DEF FN. Variables passed by reference must exactly match the DEF FN
parameters. Numeric values passed by value are changed to the type (REAL or INTEGER) of the
parameter.

See Also:
CALL, DEF FN, SUB

FOR ... NEXT

Executes a loop a fixed number of times.
Syntax: FOR control-var = start TO end [STEP step]

statements
NEXT control-var

where: control-var = numeric-name
start, end and step = numeric-expressions
statements = zero, one or more program statements

Sample: 10 FOR I=1 TO 100
20 FOR X=1 TO 100
30 PRINT I,X
40 NEXT X
50 FOR J=2*PI TO 0 STEP -PI/100
. . .
80 NEXT J
90 NEXT I
View Sample:    FOR NEXT.BAS    (also found in examples directory)
Description:

The FOR ... NEXT loop is executed a fixed number of times, by incrementing a control variable
through a fixed range. The loop consists of statements between the FOR and corresponding
NEXT statement.

When the FOR statement is executed, the initial value is assigned to the control variable. The
value is then tested against the final value. If it exceeds it (in the proper STEP direction) then
the FOR loop is not executed and control transfers to the line following the matching NEXT
statement. If there is no STEP modifier, the default step size is set to one. The step modifier can
be positive or negative. If the step modifier is zero, then the loop is infinitely repeated and no
error is generated.

When the NEXT statement is executed, the step value is added to the control variable. If the
new control value variable is larger than the end value and the step value is positive (or if the
new control variable value is smaller than the end value and the step value is negative), the
loop terminates and execution continues with the statement following the NEXT. If the control
variable has not exceeded the end value, then control is returned to the program statement
following the corresponding FOR statement.

Jumping from outside the FOR loop into the FOR loop does not give an error but should not be
done since the control variable, end value and step value will not be properly set. Jumping from
inside the FOR loop to outside the FOR loop is permitted.

See Also:
CALL, END, FN, GOSUB, GOTO, IF, LOOP, ON, PAUSE, REPEAT, RETURN, RUN, SELECT, STOP,
SUBEND, SUBEXIT, WAIT, WHILE

FRACT

Returns the fractional part of an argument.
Syntax: FRACT (numeric-expression)

Sample: PRINT FRACT(5/3)
Fraction = FRACT(Integer+Fraction)
Description:

The FRACT function returns a number greater than or equal to zero and less than one. For any
value of X, the formula X=INT(X)+FRACT(X) is true.

Porting to HP BASIC:
HTBasic allows the FRACT of a complex value, returning the fractional part of the real part of
the complex value. HP BASIC gives error 620.

See Also:
INT

FRAME

Draws a frame around the clipping area.
Syntax: FRAME

Sample: FRAME
Description:

This command frames the clipping area using the current pen and line type. FRAME ends with
the pen up and positioned in the lower left corner of the frame.

See Also:
AXES, CLIP, GRID, LINE TYPE, PEN, VIEWPORT

FRE

Returns the amount of free memory.
Syntax: FRE

Sample: Remaining=FRE-Needed
IF FRE<Wanted then CALL Wolf
View Sample:    FRE.BAS    (also found in examples directory)
Description:

This function returns the amount of available memory. To quickly see how much memory is
available, type FRE and press ENTER. The value will be printed on the message line. This is the
same value printed at the end of a LIST statement or returned by the SYSTEM$("AVAILABLE
MEMORY") function.

Command Line Switch
The amount of available memory to give HTBasic when it starts is set with a command line
switch. The -w (workspace) switch specifies how much memory to set aside for your programs
and data. The syntax is

-w amount[k|m]

where amount should be replaced with a number specifying the amount of memory. Amount can
optionally be followed by a "k" or an "m". If no "k" or "m" is given, the number specifies bytes. If
"k" is given, the number specifies kilobytes and if "m" is given, the number specifies megabytes.

The default workspace size is sixteen megabytes. Note that the amount of free memory
reported can be somewhat less than that requested because device drivers or other memory
users may allocate some of the memory during startup.

The following example allocates thirty-two megabytes:

-w 32M

Porting to HP BASIC:
FRE is a new HTBasic function that is not available in HP BASIC. It should not be used in
programs that must be ported back to HP BASIC.

See Also:
LIST, SYSTEM$

GCLEAR

Clears the graphics screen.
Syntax: GCLEAR

Sample: GCLEAR
View Sample:    GCLEAR.BAS    (also found in examples directory)
Description:

If the graphics device is a plotter, GCLEAR advances the paper. If the graphics device is a CRT,
all planes enabled with the current graphics write-mask are cleared. If any alpha data is present
in the same planes, the alpha data is re-written.

For GCLEAR to act as a page eject on some plotters, it is necessary to use HPGL2 mode.

See Also:
CLEAR SCREEN, GRAPHICS, MERGE ALPHA WITH GRAPHICS, SEPARATE ALPHA FROM GRAPHICS

GESCAPE

Sends device-specific information to a graphic device.
Syntax: GESCAPE device-selector, code [,param(*)][;return(*)]

where: code = numeric-expression, rounded to an integer.
param and return = numeric-array.

Sample: GESCAPE Dev,Operation;Array(*)
GESCAPE 14,4
GESCAPE 2,3;Hardclip(*)
GESCAPE Plttr,Select,Send(*);Receive(*)
View Sample:    GESCAPE.BAS    (also found in examples directory)
Description:

GESCAPE exchanges device-specific data with a graphic device. The code parameter
determines what operation will be done. The param array sends information to the device. The
return array receives information from the device. The type, size and shape of the arrays must
be appropriate for the requested operation. Codes greater than 99 are extensions to HTBasic
which are not present in HP BASIC. Codes in the range 30 to 41 apply to the Windows version
only.

Code 1
Return the number of color map entries. The return array must be a one dimensional INTEGER
array and have at least one element. The first element is assigned the number of color map
entries.

Code 2
Return the color map values. The return array must be a two dimensional REAL array, must have
at least one row, and must have three columns. The first row contains color information for pen
0, second row for pen 1, etc. If the array does not have enough rows or has too many rows, no
error is reported. The first column contains the information for red, the second for green and the
third for blue. The color information ranges in value from zero to one. Color values are multiples
of 1/N, where N is the number of non-black shades available for each color.

Code 3
Return the hard-clip values. The values are returned in plotter units or pixels. The return array
must be a one dimensional INTEGER array and must contain at least four elements. The first four
elements of the array are assigned the values, X min, Y min, X max, Y max, respectively. For a
CRT, the fifth and sixth elements give the INTEGER array dimensions needed by the GSTORE
command to store the screen image. For example:

10 INTEGER A(1:6)
20 GESCAPE CRT,3;A(*)
30 ALLOCATE INTEGER B(1:A(5),1:A(6))
40 GSTORE B(*)

Code 4
Set normal drawing mode. Drawing in normal drawing mode with a positive pen number sets
each pixel to the pen number. Drawing in normal mode with a negative pen number takes the
value of each pixel and clears the bits associated with the pen value. On monochrome displays,

the drawing mode is always normal so GESCAPE 4 and 5 are not supported.

Code 5
Set alternate drawing mode. Drawing in alternate mode with positive pen numbers performs an
inclusive OR on the pen value and the color-map entry number at each pixel. Drawing in
alternate mode with negative pen numbers, performs an exclusive OR on the pen value and the
color-map entry number at each pixel. On monochrome displays, the drawing mode is always
normal so GESCAPE 4 and 5 are not supported.

Code 6
Return the graphic display masks. The return array must be a one dimensional INTEGER array
and must have at least one element. The first element is assigned the value of the graphics
write-enable mask. The second element, if present, is assigned the value of the graphics display-
enable mask. Each bit in the mask corresponds to one of the bit planes. Bit 0 corresponds to the
first plane.

Code 7
Set the graphic display masks. The param array must be a one dimensional INTEGER array and
must have at least one element. The first element is assigned to the graphics write-enable
mask. The second element, if present, is assigned to the graphics display-enable mask. This
code is not supported by HTBasic. Often, where operation code 7 is used, MERGE or SEPARATE
ALPHA can be used instead.

Window Manipulation
Several GESCAPE codes allow manipulation of the HTBasic windows.
Code            Operation
30 Maximize the window
31 Hide the window
32 Restore the window
33 Set interior client of the app window position and size
34 Get interior client of the app window position and size
35 Bring the window to the top
36 Get the screen size
37 Returns the Title Bar enable flag
38 Hide / restore title bar
39 Set the DUMP size (% of paper width)
41 Minimize the window

The following GESCAPE CRT codes have been added for manipulation of the program window.

Code            Operation
46 Turn the Toolbar Off
47 Turn the Toolbar On
48 Turn the Status Bar Off
49 Turn the Status Bar On
50 Remove Main Menu
52 Disable Borders on Parent Window
53 Enable Borders on Parent Window
54 Disable Minimize button on Parent Window
55 Enable Minimize button on Parent Window
56 Disable Maximize button on the Parent Window
57 Enable Maximize button on the Parent Window
58 Disable Close button on the Parent Window
59 Enable Close button on the Parent Window
60 Turn the Bookmark Toolbar Off
61 Turn the Bookmark Toolbar On
62 Turn the Debug Toolbar Off
63 Turn the Debug Toolbar On

The following GESCAPE CRT codes have been added for manipulation of the program child
window.

Code            Operation
130 Maximize the window
131 Hide the window
132 Restore the window
135 Bring the window to the top
137 Returns the Title bar enable flag
138 Hide / Restore the Title bar (Toggle switch)
141 Minimize the window
152 Disable Borders on Child Window
153 Enable Borders on Child Window

The following example shows the syntax for several of the GESCAPES. Note that codes that set
information have a comma before the array name while codes that get information have a
semicolon.

10 INTEGER Get4(1:4),Set4(1:4),Get2(1:2),Set1(1:1)
20 DATA 90,100,500,300 ! Position of upper left corner:
30   ! 90,100), Width = 500, Height = 300
40 READ Set4(*)
50 GESCAPE CRT,30 ! Maximize the window
60 GESCAPE CRT,31 ! Hide the window
70 GESCAPE CRT,32 ! Restore the window
80 GESCAPE CRT,33,Set4(*) ! Set position and size: X,Y,W,H
90 GESCAPE CRT,34;Get4(*) ! Get position and size: X,Y,W,H
100 GESCAPE CRT,35 ! Bring the window to the top
110 GESCAPE CRT,36;Get2(*) ! Get the screen size: W,H
120 GESCAPE CRT,37;Get3(*) ! Get the title bar enable flag
130 PRINT Get(2) ! Print the Screen Size
140 PRINT Get(3) ! Print the title bar enable flag
150 Set1(1)=50 ! Set the DUMP size to 50%
160 GESCAPE CRT,38 ! Hide window Title Bar
170 GESCAPE CRT,38 ! Restore window Title Bar
180 Set (1)=50 ! Set the DUMP size to 50%
190 GESCAPE CRT,39,Set1(*) ! Set the DUMP size (default is 100%)
200 GESCAPE CRT,41 ! Minimize the window
210 GESCAPE CRT,32 ! Restore the window
220 END

Code 103
Returns the current PEN and AREA PEN assignments. The return array should be a one
dimensional INTEGER array with two elements. The first element is assigned the current PEN
assignment. The second element is assigned the current AREA PEN assignment. The following
program demonstrates this capability:

10 INTEGER P(1)
20 GESCAPE CRT,103;P(*)
30 PRINT "The current PEN is";P(0)
40 PRINT "The current AREA PEN is";P(1)
50 END

Code 104
Sets device-specific information in the PLOTTER IS device. The param array must be a one
dimensional INTEGER array. The number of elements required depends on the device driver. The
first element is the operation number and the subsequent elements are the values associated
with that operation.

For the HPGL plotter driver, code 104, operation 1 is used to enable HPGL/2 capabilities. When
HPGL/2 is used, polygons are sent to the plotter for rendering. With many plotting devices, this
allows the polygons to be filled. When generating an HPGL file for import into other programs, it
is often more desirable for the polygon to import as a single unit, rather than a series of lines. To
enable HPGL/2, use the following code. Substitute the ISC for the HPGL plotter in place of Isc in
line 40.

10 INTEGER Param(1)
20 Param(0)=1 ! HPGL Operation Number: 1 = HPGL/2 Flag
30 Param(1)=1 ! Value: 1=enable, 0=disable
40 GESCAPE Isc,104,Param(*)

Code 105
Sets device-specific information in the GRAPHICS INPUT IS device. The param array must be a
one dimensional INTEGER array. The number of elements required depends on the device driver.
The first element is the operation number and the subsequent elements are the values
associated with that operation.

Code 106
Sets device-specific information in the DUMP DEVICE IS device. The param array must be a one
dimensional INTEGER array. The number of elements required depends on the device driver. The
first element is the operation number and the subsequent elements are the values associated
with that operation.

For the dump drivers, code 106, operation 1 is used to specify a portion of the screen to dump
when DUMP GRAPHICS is executed. The syntax is:

GESCAPE PRT,106,param(*)

The param array must be a one dimensional INTEGER array of five elements. The first element is
the operation number. The remaining elements specify the boundary for the DUMP. The
boundary is specified in screen units:

param(1) - 1
param(2) - Beginning row
param(3) - Ending row
param(4) - Must be 0
param(5) - Must be 0

The CONFIGURE DUMP, PLOTTER IS CRT,"INTERNAL", and GRAPHICS INPUT ISKBD,"KBD"
statements reset the row parameters back to the defaults, full screen. The CONFIGURE DUMP
statement must be executed before the GESCAPE statement. The following program
demonstrates this capability:

10 INTEGER A(1:5)
20 DUMP DEVICE IS PRT
30 CONFIGURE DUMP TO "HP-PCL"
40 A(1)=1 ! operation code, always 1
50 A(2)=100 ! begin row, screen units
60 A(3)=300 ! end row, screen units
70 A(4)=0 ! reserved, must be 0
80 A(5)=0 ! reserved, must be 0
90 GESCAPE PRT,106,A(*)
100 FRAME
110 MOVE 0,0
120 DRAW 100,100
130 DUMP GRAPHICS
140 END

See Also:
COLOR, GSEND, PLOTTER IS

GET

Loads LIF, DOS or UNIX ASCII program file into memory.
Syntax: GET file-specifier [,append [,run]]

where: append and run = line-number|line-label

Sample: GET Modprog$,250,20
GET "A:CODEFILE"
GET "Sdir/Cdir/Pdir/CorFile"
GET "GMAT.BAS"
View Sample:    GET.BAS    (also found in examples directory)
Description:

When a GET is attempted, the first program line is read from the file and checked for a line
number. If no line number exists, an error is reported. If GET is executed from a running
program, this error can be trapped just like any other error. If the first line of the ASCII file has a
valid line number, then the GET operation first deletes the current program and variables
(except for COM variables) and then attempts to read the ASCII program lines into memory. Each
line is syntax checked as normal. If a syntax error is found, the line is listed to the PRINTER IS
device, turned into a comment (by adding "!* " after the line number) and then saved in
memory with the other program lines.

If GET specified an append line, then the current program is deleted starting at the append-line;
the new lines are appended to the current program and are renumbered to start at the append
line number. If GET did not specify an append line, then the program is read in without
renumbering.

If GET specifies a run line (line must be in main context), execution resumes automatically at
the run line after a prerun. If GET, executed from a program, does not specify a run line,
execution resumes at the beginning of the program. If GET, executed from the keyboard, does
not specify a run line, a RUN command must be given to start execution. If a syntax error
occurred during the GET, the error is reported and no RUN takes place. These errors cannot be
trapped.

GET has been extended to read programs in many different formats: LIF ASCII, DOS ASCII, UNIX
ASCII, Viper-I ASCII and Viper-II ASCII. In DOS and UNIX ASCII files, carriage-returns (CR) are
ignored and line-feeds (LF) are used to terminate lines. Program lines can be terminated with LF,
CR/LF or LF/CR. Files that are terminated with CR only can only be read after an LF is added at
the end of each line.

See Also:
CONFIGURE SAVE, LOAD, RE-SAVE, SAVE

GFONT IS
Specifies the font which the LABEL command will use on the graphics screen.

Syntax:

GFONT IS Fontname

where:

Fontname is the name of a windows font.

Sample:

GFONT IS “Courier”
GFONT IS “Lucida Console”
GFONT IS Fontname$

View Sample:    GFONT IS.BAS    (also found in examples directory)

Description:

The GFONT IS command allows the user to specify the font that the LABEL command will use on the graphics
screen. GFONT IS “” will reset the font to the default font.

Size and rotation of the font are set using the normal label-related commands.

See Also:

LABEL, SYSTEM$

GINIT

Initializes graphics parameters to their default values.
Syntax: GINIT

Sample: GINIT
View Sample:    GINIT.BAS    (also found in examples directory)
Description:

GINIT is a fast way to reset colors and other graphic options without explicitly setting each
option. GINIT also terminates any graphics input device or active plotter. GINITchanges the
PLOTTER IS back to "INTERNAL." If the previous PLOTTER IS was a file, it is closed. GINIT
changes the GRAPHICS INPUT IS back to "KBD." The default values for graphic options are
dependent on the current device driver, but are typically:

AREA PEN 1 MOVE 0,0
CLIP OFF PDIR 0
CSIZE 5,0.6 PEN 1
LDIR 0 PIVOT 0
LINE TYPE 1,5 GESCAPE CRT,4
LORG 1

The WINDOW and VIEWPORT are both set to their initial values which are: top = 100, bottom =
0, left = 0, right = RATIO*100. Note the value of the right viewport setting depends on the
aspect ratio of the graphic device.

See Also:
GRAPHICS INPUT IS, PLOTTER IS

GLOAD

Loads an integer array into the CRT display buffer.
Syntax: GLOAD [device-selector,] integer-array(*) [rectangle-params]

where: rectangle-params = ,width,height [,rule [,xorig, yorig]]

Sample: GLOAD Image1(*)
IF Abort THEN GLOAD Explode(*)
GLOAD CRT,Image(*),200,200,3,0,100
View Sample:    GLOAD.BAS    (also found in examples directory)
Description:

This command displays on the screen an image from an integer array. The image in the array is
most frequently one saved from the screen into the array with the GSTORE command. The
device-selector specifies the destination device, which must be a bit-mapped device. The CRT is
assumed if no device selector is specified.

Two forms of the GLOAD statement are supported. The first form is compatible with the GLOAD
statement in HP BASIC and displays an image which fills the entire screen.

The second form displays an image which fills an arbitrary sized rectangular portion of the
screen. For users porting programs from HP BASIC which use the Bstore()/Bload() CSUBs
supplied with HP BASIC, the "Porting HP BASIC Programs to the PC" chapter of the User's Guide,
presents Bstore()/Bload() SUBs which call GSTORE and GLOAD using the integrated syntax.

Full Screen GLOAD
The size of the array necessary to store a complete screen image for each display depends on
the resolution and on the number of colors the display supports. GESCAPECRT,3 can be used in a
program to determine the size necessary. The following table gives the sizes for some display
adaptors. The array may be declared larger or smaller than the size given. If the array is not
large enough to contain a full screen image, GLOAD stops when all the array contents have
been transferred to the screen. If the array is too large, only part of the array will be used. If an
attempt is made to GLOAD an image to a display that is different from the GSTORE display,
unpredictable results will occur. If the color map has different values than when the image was
GSTOREd, the colors will not match the original image.

Display Array Size
SVGA16;640x480 Image(1:160,1:480)
SVGA16;800x600 Image(1:200,1:600)
SVGA16;1024x768 Image(1:256,1:768)
SVGA256;640x480 Image(1:320,1:480)
SVGA256;800x600 Image(1:400,1:600)
SVGA256;1024x768 Image(1:512,1:768)

The format of the image data within the array is documented for most displays in the User's
Guide.

Rectangular Blocks
When a Width and Height are specified after the image array, only a rectangular block is loaded
from the array onto the display. Width and Height are specified in pixels. Optionally, a Rule can
be specified which instructs GLOAD how to combine the contents of the array with the contents
of the screen. Presently, only a value of 3 is supported, which causes the contents of the array
to totally overwrite the specified block on the display. The block will be located with the upper
left corner at the current graphic position. Alternately, a position can be specified with the
Xorigin, Yorigin parameters. These parameters should be specified in the current WINDOW units,
not pixels or VIEWPORT units (GDUs).

The image is stored with one byte per pixel. This makes images somewhat transportable among
different displays. It also means that the number of elements necessary to store the image is
equal to Width*Height/2. If the width is even, the array could be declared as

INTEGER Image(1:Width/2,1:Height)

If the array is too small, an error is given. If the array is too large, the extra elements are
ignored. If GLOADis used to display an image on a display with less colors than the GSTORE
display, the results are undefined. If the color map is different than the color map in effect when
the image was GSTOREd, the colors will not match the original image.

Windows Version Usage Notes
Not all windows CRT drivers support GLOAD/GSTORE. Full screen GLOAD/GSTORE uses BMP
format. The contents of the array can be saved in a file and modified by most Windows
draw/paint programs. The array contains both palette and image information.

graphics_buffer off.    If the graphics_buffer command line switch is off and another window
overlaps the HTBasic window, the overlapping portion of the window will be included in the
stored image. If the window is iconified, the stored image will be the HTBasic icon. If part of the
HTBasic window is offscreen, only the part on screen is stored. To avoid these side-effects, use
the "-gr on" command line switch.

COLOR LOSS.    If a BMP file is loaded into an array and GLOADed to the screen, some color
information may be lost. Any color in the image that doesn't exist in the destination palette are
changed to similar colors that do exist in the palette.

See Also:
GESCAPE, GSTORE

GOSUB

Transfers control to a subroutine.
Syntax: GOSUB subroutine

where: subroutine = line-label | line-number

Sample: GOSUB 1000
GOSUB John
View Sample:    GOSUB.BAS    (also found in examples directory)
Description:

A subroutine is any portion of a program context beginning with a line mentioned in and defined
in the same context, as a GOSUB statement and ending with a RETURN statement.

When a running program encounters a GOSUB statement, it saves the current line number and
then transfers control to the specified line. Execution continues normally until a RETURN
statement is executed, at which point the program jumps back and resumes execution at the
line after the GOSUB statement. Execution of a RETURN statement without a GOSUB will give
an error.

If the subroutine is called by ON ERROR GOSUB, it can also include ERROR RETURN statements.
A RETURN re-executes the statement which caused the error, while ERROR RETURN skips it.

Porting Issues
Under HTBasic, GOSUB and ALLOCATE use the same stack. Intermixing these statements can
cause changes in available memory that are different from HP BASIC. In practice this causes no
problems.

See Also:
ERROR RETURN, GOTO, ON, ON-event GOSUB, RETURN

GOTO

Transfers control to a specified line.
Syntax: GOTO { line-label | line-number }

Sample: GOTO 510
GOTO Loop
View Sample:    GOTO.BAS    (also found in examples directory)
Description:

Program execution continues at the specified line. This line must be in the current context.

See Also:
GOSUB, ON

GRAPHICS

Makes the graphics screen visible or invisible.
Syntax: GRAPHICS { ON | OFF }

Sample: GRAPHICS ON
IF No_show THEN GRAPHICS OFF
View Sample:    GRAPHICS.BAS    (also found in examples directory)
Description:

GRAPHICS ON makes the graphics screen visible; GRAPHICS OFF makes it invisible.

GRAPHICS ON/OFF has no effect when ALPHA and GRAPHICS are MERGEd. SEPARATE ALPHA
FROM GRAPHICS must be executed before this statement has any effect.

See Also:
ALPHA, GCLEAR, MERGE ALPHA WITH GRAPHICS, PLOTTER IS, SEPARATE ALPHA FROM GRAPHICS

GRAPHICS INPUT IS

Defines the device to be used for graphic input.
Syntax: GRAPHICS INPUT IS device-selector, "driver-name [;options]"

where: driver-name = KBD | HPGL | TABLET
options = driver options. See text for detailed information.

Sample: GRAPHICS INPUT IS KBD,"KBD"
GRAPHICS INPUT IS 705,"HPGL"
GRAPHICS INPUT IS 705,"TABLET;BIN-2,0,5000,0,5000"
View Sample:    GRAPHICS INPUT IS.BAS    (also found in examples directory)
Description:

This statement specifies which device and driver to use for DIGITIZE, READ LOCATOR and SET
LOCATOR statements.

The device-selector specifies the device or interface to use to communicate with the graphic
input device. This is usually KBD, an IEEE-488 device selector or the Serial interface select code.
The driver name and options, shown in literal form in the above syntax diagram, can be
specified with a string expression. The string specifies which driver to use with the device. The
default device is KBD and the default driver is "KBD".

Graphics Input Drivers
HTBasic supports loadable graphics drivers. The first time a driver is specified in a GRAPHICS
INPUT IS statement, the driver is loaded and used for graphics input. When the driver is
subsequently specified, it is not loaded again, but is again used for graphics input. The following
table lists the drivers available at the time of this manual printing. (Not all drivers are available
in all versions.)

Name For These Devices
KBD Keyboard arrow keys or Mouse
HPGL HPGL Plotters or Digitizers
TABLET Most available digitizing tablets

HTBasic automatically loads the "KBD" driver when it starts. Up to ten graphic and dump drivers
can be loaded at a time.

Driver files can be loaded at any point. It is recommended that GRAPHICS INPUT IS
statements be included in your AUTOST file to load any necessary drivers.

To find the driver file HTBasic takes the driver specified in the GRAPHICS INPUT IS statement
and performs several operations upon it to find the correct file. ".DW6" is appended to the
name. Then the following locations are searched, in the specified order:

1. The directory containing the HTBasic executable.

2. The current directory.
3. The Windows system directory (such as \WINNT\SYSTEM32).
4. The Windows directory.
5. The directories listed in the PATH environment variable.

KBD Driver
The keyboard (KBD) graphics input driver provides support for input of X and Y coordinates from
the keyboard arrow keys or the mouse. The KBD driver is loaded at start up. The command to
switch back to the KBD graphics input driver from another driver is

GRAPHICS INPUT IS KBD,"KBD"

The following example program shows how to set up the KBD driver and get coordinate
information from the input device.

10 PLOTTER IS CRT,"INTERNAL"
20 GRAPHICS INPUT IS KBD,"KBD"
30 TRACK CRT IS ON
40 FRAME
50 DIGITIZE X,Y,S$
60 PRINT X,Y,S$
70 END

HPGL Driver
The HPGL graphics input driver provides support for any input device that accepts Hewlett
Packard's HPGL language. Some HPGL compatible devices are the HP 9111A and HPGL plotters.

TABLET Driver
The TABLET graphics input driver provides support for most digitizers currently available. It
usually uses either the serial port or the IEEE-488 (GPIB) bus to communicate with the tablet.
The following guidelines will help you in loading the driver and in selecting the proper tablet
configuration and data communication options. The command to load the TABLET graphics input
driver is:

GRAPHICS INPUT IS Isc,"TABLET;[mode[,]][resolution]"

The mode option allows you to specify the method in which the tablet's data is interpreted by
the driver. If both mode and resolution options are specified, specify the mode option first and
separate the two by a comma. The following table gives the legal values for mode:

Mode Meaning
(None) Comma separated ASCII
BIN-1 Summagraphics MM Binary Format
BIN-2 Hitachi Binary Format
BIN-3 UIOF Binary Format.

If no mode is specified, then the driver assumes the tablet is using a comma separated, CR/LF
terminated, ASCII data format. The data cannot contain any decimal points within the string.
ASCII format is preferred over binary; it tends to be easier to setup and get working. The binary
formats are explained in greater detail in the Installing and Using manual. The resolution option
is sometimes necessary to scale X and Y values read from the tablet. The TABLET driver
assumes a default maximum resolution of 11000 units in both the X and Y directions. This value
is used to scale the digitizer coordinates to the display WINDOW coordinates. If this value is not
correct for your digitizer or if you want to adjust for any distortion, you can change the scaling
values with the following command:

GRAPHICS INPUT IS 9,"TABLET;Xmin,Xmax,Ymin,Ymax"

Xmin and Xmax are the digitizer's X values that correspond to the display's minimum and
maximum X values respectively. Ymin and Ymax are the digitizer's Y values that correspond to
the display's minimum and maximum Y values. Please note that these values are specified in
device units.

The TABLET driver scales the digitizer X and Y coordinates into the display WINDOW coordinates.
For example, suppose the screen's WINDOW resolution is 0-133 in the X direction and 0-100 in
the Y direction and the digitizer's X and Y resolution is 0-11000. If the digitizer returns
11000,11000 as the current X and Y location, the DIGITIZE statement will return a value of
100,133 to the user. If you want the X and Y values to be the same for equal movements in the
X and Y directions, specify a square WINDOW. For example:

WINDOW 0,100,0,100

The digitizer has two options that are critical to make it work properly with HTBasic. They are as
follows:

•    Handshaking Mode
•    Absolute coordinates

Some other tablet settings that are not critical, but recommended are as follows:

•    Data transmitted only in proximity.
•    Disable Increment mode.
•    Disable leading zero's.
•    Enable RUN mode.
•    Enable Maximum report rate.

Please consult your digitizer documentation for the correct switch settings for these options.

Communication
The TABLET and HPGL drivers usually use either the serial port or the IEEE-488 (GPIB) bus to
communicate with the digitizer. This is specified by the device-selector in the GRAPHICS INPUT
IS statement. For example:

GRAPHICS INPUT IS 702,"TABLET" !GPIB Address 2
GRAPHICS INPUT IS 9,"TABLET" !First Serial Port

Communication with the tablet over the GPIB bus is straight forward. You specify the device-
selector (i.e. 702) and the control and data messages proceed without further setup.

Communication with the tablet over the serial port is more involved because of the many serial
configuration options. The SERIAL driver defaults to 8 Data Bits, No Parity Bit, 1 Stop Bit and a
speed of 9600 Baud. Make sure that the switches on the tablet are set to match these defaults
or specify the differences when loading the SERIAL driver.

The tablet may support either XON/XOFF handshaking or hardware handshaking. Find out which
method your tablet supports and set the SERIAL driver to use the same handshaking. By default
the SERIAL driver uses XON/XOFF handshaking, the following line is all that is needed to set the
driver to this method.

10 LOAD BIN "SERIAL" !Loads SERIAL device driver

If you need to use hardware handshaking, you will have to set a number of other registers within
the SERIAL driver. The following program lines specify hardware handshaking.

10 LOAD BIN "SERIAL" !Loads SERIAL device driver
20 CONTROL 9,5;0 !Use DTR and RTS
30 CONTROL 9,12;0 !Read DSR, CD and CTS
40 CONTROL 9,100;0 !Disable XON/XOFF handshaking

With some digitizers the RTS line must be held active to make the TABLET driver work correctly,
otherwise an error will occur after several successful reads. To hold the RTS line active change
program line 20 to CONTROL 9,5;2. Make sure the tablet is set to hardware handshaking. For
some tablets, this is specified as CTS handshaking.

Porting Issues

Both HP BASIC and HTBasic do an implicit GRAPHICS INPUT IS assignment for you if you
attempt to use graphic input statements before an explicit GRAPHICS INPUT IS statement. The
difference is that HTBasic does the implicit GRAPHICS INPUT IS as soon as HTBasic is started
and HP BASIC waits until the first graphic input statement is executed. The only known effect of
the different approach is that under HP BASIC, a SYSTEM$("GRAPHICS INPUT IS") returns "0" until
the first graphic statement is executed and HTBasic returns the correct value anytime.

See Also:
DIGITIZE, PLOTTER IS, READ LOCATOR, SET LOCATOR, TRACK

GRID

Draws a grid pattern.
Syntax: GRID [x1 [,y1 [,x2 [,y2 [,x3 [,y3 [,minor]]]]]]]

Sample: GRID 20,20
GRID 20,20,0,0,2,2
View Sample:    GRID.BAS    (also found in examples directory)
Description:

With no arguments GRID produces a simple axes. The addition of x1 and y1 cause a grid to be
drawn. The x1,y1 values specify the spacing between grid lines.

A value of zero (the default) disables grid lines in that direction. Grid lines are drawn across the
entire soft-clip area. The values x2,y2 specify the origin of the grid; the defaults are 0,0.

The values of x3,y3 substitute short tick marks in the place of full grid lines. A value of n
specifies that only 1 out of n divisions use a full grid line. The other (n-1) divisions use tick marks
instead. The defaults are 1,1. This disables tick marks because full grid lines are drawn for all
the divisions.

The minor value specifies the size of tick marks. The default is 2 graphic display units.

See Also:
AXES, FRAME, LINE TYPE, PEN

GSEND

Sends commands to the PLOTTER IS device.
Syntax: GSEND string-expression

Sample: GSEND Msg$
IF Aplotter THEN GSEND "PD;"
Description:

This command sends a string to the current PLOTTER IS device. This is sometimes useful in order
to send a command to the PLOTTER IS device which is not normally sent by the graphic
statements.

See Also:
GESCAPE, PLOTTER IS

GSTORE

Stores the CRT display buffer into an integer array.
Syntax: GSTORE [device-selector,] integer-array(*) [rectangle-params]

where: rectangle-params = ,width,height [,rule [,xorig, yorig]]

Sample: GSTORE Diagram(*)
IF Keep THEN GSTORE Current(*)
GSTORE CRT,Image(*),200,200,3,0,100
View Sample:    GSTORE.BAS    (also found in examples directory)
Description:

This command saves an image from the screen into an integer array. The image in the array is
most frequently used for re-display with the GLOAD command. The device-selector specifies the
source device, which must be a bit-mapped device. The CRT is assumed if no device selector is
specified.

Two forms of the GSTORE statement are supported. The first form is compatible with the
GSTORE statement in HP BASIC and stores an image which fills the entire screen.

The second form stores an image which fills an arbitrary sized rectangular portion of the screen.
For users porting programs from HP BASIC which use the Bstore()/Bload() CSUBs supplied with
HP BASIC, the "Porting HP BASIC Programs to the PC" chapter of the User's Guide, presents
Bstore()/Bload() SUBs which call GSTORE and GLOAD using the integrated syntax.

See Also:
GESCAPE, GLOAD

HELP

Displays Manual pages on the computer screen.
Syntax: HELP [manual-entry [second keyword]]

where: manual-entry = a keyword from the manual
second-keyword = legal secondary keyword

Sample: HELP
HELP SELECT
HELP CONFIGURE LABEL
Description:

The HELP command is used to look up material in this online help. The online manual is virtually
the same as the printed material.

To look up a manual-entry when not in HELP mode, type:

HELP manual-entry

and press ENTER. The first page about that manual entry will be displayed. A primary keyword
may have several manual entries, describing different combinations of the keyword followed by
a secondary keyword. For example, the primary keyword ON has several entries, such as ON, ON
CYCLE, ON DELAY, etc. The

HELP ON

command places you at the start of the first entry that talks about ON. The

HELP ON TIMEOUT

command places you at the start of the ON TIMEOUT entry.

Navigating in HELP Mode
To switch to a different manual entry while in HELP mode, type the new keyword and press
ENTER. To get another page of information, press ENTER or CONTINUE. To exit the HELP mode,
press CLR SCR. To read something that has scrolled off the top of the screen, scroll the screen
back using PREV and NEXT or the UP and DOWN arrow keys.

Navigating in Windows Help
The Windows version of HTBasic uses the standard Windows Help system used by most windows
programs. The buttons and menu items at the top of the help system do the following:

Use this To do this
Contents View the table of Contents
Search Search the index
Back Return to previously viewed topics
History View list of previously viewed topics
<< View the previous page of the manual
>> View the next page of the manual
Print Print the current topic
Copy Copy the current topic to the clipboard
Annotate Attach a note to the current topic
Bookmarks Place a bookmark, or go to a bookmark
Always on Top Force Help window to stay on top of other windows

Additionally, hyperlinks allow easy navigation among related topics. On most displays,
hyperlinks are underlined in green. Click on a link to show the related topic. Click on Back to
return to the previous topic.

HIL
HIL related statements are not supported.

IDRAW

Draws a line an incremental distance.
Syntax: IDRAW x-displacement, y-displacement

where: x-displacement and y-displacement = numeric-expressions

Sample: IDRAW 0,25
IDRAW DispX,DispY
IDRAW X+10,Y+25
View Sample:    IDRAW.BAS    (also found in examples directory)
Description:

The pen is lowered and then moved to the position calculated from adding the specified X and Y
displacement to the current pen position. After IDRAW executes, the logical pen position is
updated and the pen is left in the down position. IDRAW 0,0 draws a point.

If you specify a destination which is outside the clipping area, the logical position is set to that
point but the pen is not moved. Only the portion of the vector which lies inside the clipping area
is plotted.

The PIVOT statement affects the IDRAW statement.

See Also:
CLIP, DRAW, IMOVE, IPLOT, LINE TYPE, MOVE, PIVOT, PLOT, RPLOT, SHOW, VIEWPORT, WINDOW

IF ... THEN

Performs an action if a condition is true.
Syntax: Single Line IF:

IF expression THEN action

Block IF:
IF expression THEN
      statements
[ELSE]
      statements
END IF

where: expression = numeric-expression rounded to a boolean
true if non-zero and false if zero.
action = line-number | line-label | program statement
statements = zero, one or more program statements

Sample: 10 IF J2=K THEN 1200
20 IF X=Y THEN Y=Z
30 IF A<0 THEN
40 PRINT "Below Limit!"
50 ELSE
60 CALL Convert
70 END IF
View Sample:    IF THEN.BAS    (also found in examples directory)

Description:
In a single line IF statement, if the expression is true, the action following the THEN is taken. If
the expression is false, execution continues with the statement following the IF statement.

The following statements are not allowed in single line IF ... THEN statements:

CASE CASE ELSE COM
DATA DEF FN DIM
ELSE END END IF
END LOOP END SELECT END WHILE
EXIT IF FNEND FOR
IF IMAGE INTEGER
LOOP NEXT OPTION BASE
REAL REM REPEAT
SELECT SUB SUBEND
UNTIL WHILE

To construct a block IF statement, no action is allowed after the THEN on the IF statement and
the block structure must end with an END IF statement. Only the block IF statement allows the
optional ELSE statement. If the expression is true the statements between the IF ... THEN and
the ELSE are executed. Control then continues with the statement following the END IF
statement. If the expression is false, the statements between the ELSE and the END IF are
executed.

Although HTBasic does not have an explicit ELSE IF statement, it is possible to accomplish the
same thing using a SELECT statement. See SELECT for an example.

See Also:
CALL, END, FN, FOR, GOTO, GOSUB, LOOP, ON, PAUSE, REPEAT, RETURN, RUN, SELECT, STOP,
SUBEND, SUBEXIT, WAIT, WHILE

IMAG

Returns the imaginary part of a complex number.
Syntax: IMAG(numeric-expression)

Sample: PRINT IMAG(Z)
DRAW REAL(C),IMAG(C)
View Sample:    IMAG.BAS    (also found in examples directory)
Description:

The imaginary part of a complex number is returned with IMAG and the real part with REAL. To
express the parts of a complex number in polar form, use ABS and ARG:

PRINT "Rectangular form: Real = ";REAL(Z),"Imag =";IMAG(Z)
PRINT "Polar form: Magnitude = ";ABS(Z),"Angle = ";ARG(Z)

See Also:
ABS, ARG, CMPLX, CONJG, REAL

IMAGE

Defines the format for data input and output.
Syntax: IMAGE image-specifier [,image-specifier...]

where: image-specifier = # | % | K | -K | H | -H | B | W | Y | + | - |
[repeat-factor] A... | [repeat-factor] X... |
[repeat-factor] /... | [repeat-factor] L... |
[repeat-factor] @... | numeric-specifier |
"string-literal"
numeric-specifier = [S|M] [left-digits] [.|R] [right-digits] [exp]
left-digits = [repeat-factor] {D|Z|*}...
right-digits = [repeat-factor] D...
exp = E | ESZ | ESZZ | ESZZZ
repeat-factor = integer-constant (1 to 32767)

Sample: IMAGE 4ZZ.DD,3X,K,/
PRINT USING """Results = "",SDDDE,3(XX,ZZ)";R,Array(*)
OUTPUT KBD USING "#,B,A"; 255,"K"
ENTER KBD USING 30;X
View Sample:    IMAGE.BAS    (also found in examples directory)
Description:

Executing an IMAGE statement by itself does nothing. The IMAGE statement is used to format
data for the ENTER, OUTPUT, DISP, LABEL and PRINT USING statements. These statements may
use an IMAGE statement as their format by specifying the line number or label name of the
IMAGE statement. Alternately, they can contain a string expression containing the image. To
embed quotation marks in a string literal, include two quotation marks.

A complex number is treated like two real numbers and should be specified with two image
specifiers. The first specifier defines how the real part should be output/entered and the second
specifier does the same for the imaginary part.

The image specifiers in the image list are acted upon as they are encountered. Each specifier
should have a matching OUTPUT/ENTER item. Processing of the image list stops when no
matching OUTPUT/ENTER item is found. Conversely, the image list is reused starting at the
beginning to provide matches for all remaining OUTPUT/ENTER items.

If more decimal places to the left of the decimal point are required to output a numeric item
than are specified in the image specifier, an error is generated. If M or S are not specified, then a
minus sign will take up one digit place. If the number contains more decimal places to the right
of the decimal point than are specified in the image field, the output is rounded to fit.

If the number of characters specified in an image specifier for a string is less than the number of
characters in a string, then the remaining characters are ignored. If the number of characters
specified is greater than the number of characters in a string then trailing blanks are used to fill
out the image field.

OUTPUT, etc.

IMAGE specifiers have the following meanings in DISP, LABEL, OUTPUT and PRINT statements:

Suppress automatic output of EOL following the last item.

% Is ignored in OUTPUT images.

K Output a number or string in default format, with a period for the radix.

-K Means the same thing as K.

H Output a number or string, default format, comma radix.

-H Means the same thing as H.

B Output a byte, like the CHR$ function. If the value is larger than 32767, 255 is
sent. If the value is smaller than -32768, 0 is sent. If the value is in between, it
is rounded to an integer and the least significant byte (CINT(value) MOD 256)
is sent.

W Output a word in 2's complement 16-bit integer form. If the value is larger
than 32767, 32767 is sent. If the value is smaller than -32768, -32768 is sent.
If the interface is 16-bit, the word is output in one operation (even if the BYTE
attribute was used in the I/O path). If the interface is 8-bit, the byte ordering
depends on the LSB/MSB attribute of the I/O path. If the destination is a string,
native byte ordering is always used (LSB FIRST on a PC, MSB FIRST on a Sun or
HP Workstation). If the WORD attribute was specified in the I/O path, a pad
byte will be output before the word when necessary to achieve word
alignment.

Y Means the same as W, except that word alignment is not done and the
BYTE attribute is not ignored.

+ Change the automatic output of EOL to carriage-return after the last item.

- Change the automatic output of EOL to line-feed after the last item.

M Output a minus sign if negative, a blank if positive.

S Output the sign of the number (+ or -).

D Output one numeric digit character. The leading zero's are replaced
by blanks, a minus sign is displayed on negative numbers.

Z Means the same thing as D except leading zeros are displayed.

* Means the same thing as D except leading zeros are replaced with
asterisks.

.(period) Output a decimal-point radix indicator.

R Output a comma radix indicator.

E Output an 'E', a sign character and a two-digit exponent.

ESZ Output an 'E', a sign character and a one-digit exponent.

ESZZ Output an 'E', a sign character and a two-digit exponent.

ESZZZ Output an 'E', a sign character and a three-digit exponent.

A Output an alphanumeric string character.

X Output a blank.

/ Output a carriage-return and line-feed.

L Output the current EOL sequence. The default is CR/LF.

@ Output a form-feed character.

"string-literal" Output the characters in the string literal. Remember to double the quote
marks when the image is not in an IMAGE statement.

ENTER
IMAGE specifiers have the following meanings in an ENTER statement:

Causes the statement to terminate when the last item is terminated. No
statement terminator is needed, EOI and LF are item terminators and early
termination is not allowed.

% Is the same as # except EOI causes early statement termination when it
terminates an item.

K Allows free-field entry. For numerics, entered characters are sent to the
number builder, leading non-numeric characters and blanks are ignored,
trailing non-numeric characters and characters sent with EOI true are
delimiters. For strings, entered characters are sent to the string. A CR may be
sent to the string if it is not followed by a LF. The string is terminated by CR/LF,
LF, character received with EOI true or the string dimensioned length being
filled.

-K Is like K except LF and CR/LF are not terminators.

H Is the same as K except a comma is the radix indicator and a period is a non-
numeric character.

-H Means the same as -K for strings and H for numbers.

B Demands one Byte, like the NUM function.

W Demands a 16-bit Word (2's complement integer). If the interface is 16-bit, the
word is entered in one operation (even if the BYTE attribute was used in the
I/O path). If the interface is 8-bit, the byte ordering depends on the LSB/MSB of
the I/O path. If the source is a string, native byte ordering is always used (LSB
FIRST on a PC, MSB FIRST on a Sun or HP Workstation). If the WORD attribute
was specified in the I/O path, a pad byte will be entered before the word when
necessary to achieve word alignment.

Y Is the same as W, except that word alignment is not done and the BYTE
attribute is not ignored.

+ Indicates an END (EOI) is needed with the last character of the last item to
terminate the ENTER statement. LFs are no longer statement terminators, but
are still item terminators.

- Indicates a LF is needed to terminate the ENTER statement. EOI is ignored;
other END indicators cause an error.

S Same meaning as D.

M Same meaning as D.

D Demands one character for each D or repeat count. Non-numerics are
consumed while fulfilling the count but also delimit the number. Blanks
embedded in the number are ignored.

Z Same meaning as D.

* Same meaning as D.

.(period) Same meaning as D.

R Has the same meaning as D, plus the number builder is instructed to use a   
comma as the radix indicator and a period as a non-numeric character.

E Is treated the same as 4D.

ESZ Same as 3D.

ESZZ Same as 4D.

ESZZZ Same as 5D.

A Demands one alphanumeric string character.

X Enters a character and discards it.

/ Skips all characters to the next LF. EOI is ignored.

L Ignored in ENTER.

@ Ignored in ENTER.

"string-literal" One character is skipped for each character in the string literal. Remember to
double the quote marks when the image is not in an IMAGE statement.

Porting Issues
Entering data from a string using

ENTER L$ USING "Y"

will always use the internal byte ordering of the computer. For PCs and compatibles, the byte
ordering is least significant byte (LSB) first. For Sun SPARCstations and HP Workstations, the byte
ordering is most significant byte (MSB) first. This limitation applies to ENTER/OUTPUT with
strings only. With devices, the byte ordering can be selected in the ASSIGN statement.

See Also:
ENTER, DISP, LABEL, OUTPUT, PRINT

IMOVE

Lifts and moves the logical pen position incrementally.
Syntax: IMOVE x-displacement, y-displacement

Sample: IMOVE 25,0
IMOVE Xdisp,Ydisp
IMOVE Xx+10,Yy
View Sample:    IMOVE.BAS    (also found in examples directory)
Description:

The pen is lifted and then moved to the position calculated from adding the specified X and Y
displacement to the current pen position. After IMOVE executes the logical pen position is
updated and the pen is left in the up position.

If you specify a destination which is outside the clipping area, the logical position is set to that
point but the pen is not moved.

The PIVOT statement affects the IMOVE statement.

See Also:
CLIP, DRAW, IDRAW, IPLOT, LINE TYPE, MOVE, PIVOT, PLOT, RPLOT, SHOW, VIEWPORT, WINDOW

INDENT

Indents a program to reflect its structure.
Syntax: INDENT [start-column [,increment]]

where: start-column = integer-constant in the range 1 to screen-width - 15
increment = integer-constant in the range 0 to screen-width - 15

Sample: INDENT
INDENT 10,5

Description:
INDENT is an editing command used to insert spaces after the line numbers and before the
leading keywords of a program in order to visually show the structure of the program. The
increment value specifies how many spaces to indent each successive structure. The start-
column specifies the column to place un-indented lines. The default start-column is seven. The
default increment value is two. The INDENT statement will move lines starting with REM or a
comment tail (!) but will not move comments appended to other statements with a comment
tail.

The following statements add a level of indentation: DEF FN, FOR, IF ... THEN, LOOP, REPEAT,
SELECT, SUB and WHILE. The following statements are printed one indentation level to the left,
but leave the indentation level unchanged: CASE, CASE ELSE, ELSE, EXIT IF, FNEND and
SUBEND. The following statements subtract one level of indentation: END IF, END LOOP, END
SELECT, END WHILE, NEXT and UNTIL.

This statement can only be executed from the keyboard. It cannot be included in a program.

See Also:
CHANGE, COPYLINES, DEL, DELSUB, EDIT, FIND, MOVELINES, REN, SECURE, XREF

INITIALIZE

Initializes mass storage media.
Syntax: INITIALIZE volume-specifier [,interleave [,option]]

where: interleave and option = numeric-expressions

Sample: INITIALIZE "A:"
INITIALIZE Disc$,2

Description:
HTBasic does not support the INITIALIZE statement. Use EXECUTE with the “FORMAT” operating
system command. Any previous data on the mass storage media is lost when it is initialized. Be
very careful when initializing disks. It is easy to accidentally initialize the wrong disk, such
as a hard disk with hundreds of megabytes of valuable data.

Use either the "FORMAT" command to initialize a disk. For example, use this command to
initialize a DOS format floppy disk in drive A:

EXECUTE "FORMAT A:"

Or use the File Manager to initialize a disk. Select "Disk" and then "Format Disk...". Use your HP
Series 200/300 system to initialize a new HP LIF format diskette.

RAM disks are not supported with the INITIALIZE ":MEMORY,0" command. Many excellent RAM
disk programs are available for the PC that make a RAM disk available to all programs, including
HTBasic. These programs can usually make RAM disks in conventional, expanded or extended
memory.

See Also:
EXECUTE, MASS STORAGE IS

INMEM

Identifies if a subprogram or DLL is loaded.
Syntax: INMEM(sub-pointer)

where: sub-pointer = string expression specifying a subprogram name

Sample: IF INMEM("Operation") THEN CALL Operation
Present = INMEM("Test")
View Sample:    INMEM.BAS    (also found in examples directory)
Description:

This function returns one if the specified subprogram has been loaded into memory and zero if it
has not. The subprogram must be specified with the initial character in uppercase and
subsequent characters in lowercase.

The string expression specifying the subprogram name is called a subprogram pointer because it
"points" to the subprogram rather than explicitly naming it. As the expression changes, the
pointer points to different subprograms. The following example illustrates how this can be
useful.

10 SUB Xform(X(*))
20 Method$="Xform"&VAL$(RANK(X))
30 IF NOT INMEM(Method$) THEN LOADSUB Method$
40 CALL Method$ WITH(X(*))
50 DELSUB Method$
60 SUBEND

In HTBasic, subprogram pointers can also be used in CALL, DELSUB, LOADSUB and XREF
statements.

See Also:
CALL, DELSUB, DLL LOAD, LOADSUB, XREF

INP and INPW

Inputs a byte or word from an I/O Port.
Syntax: INP(port)

INPW(port)

where: port = numeric-expression rounded to an integer

Sample: PRINT IVAL$(INPW(&H300),16)
X=INP(Base+3)
View Sample:    INP.BAS    (also found in examples directory)
View Sample:    INPW.BAS    (also found in examples directory)
Description:

The INP statement inputs a byte from the specified I/O port. The value returned will be an
integer in the range 0 to 255. It is equivalent to READIO(8080,Port).

The INPW statement inputs an INTEGER from the specified I/O port. It is equivalent to READIO(-
8080,Port). These statements are useful for doing I/O with devices, data acquisition boards, etc.
for which there is no available device driver.

Some operating systems protect I/O ports; applications are not allowed to read or write them.
Under such operating systems, these functions are not allowed. Windows NT is such an
operating system.

Porting to HP BASIC:
INP and INPW are new HTBasic functions that are not available in HP BASIC. They should not be
used in programs that must be ported back to HP BASIC.

See Also:
OUT and OUTW, READIO, WRITEIO

INPUT

Inputs numeric or string data from the keyboard.
Syntax: INPUT ["prompt",] item [, ["prompt",] item ...]

where: prompt = string-literal
item = numeric-name [{(subscripts) | (*)}]    |
string-name$ [{[(subscripts)] '['sub-string']' |(*)}]
subscripts = subscript [,subscript...]

Sample: INPUT A,B$,C(4),D
INPUT Parray(*)
INPUT "",Str$[1;10]
INPUT "Xcoor=",X,"Ycoor=",Y
INPUT "Enter 4 numbers",Y(1),Y(2),Y(3),Y(4)
View Sample:    INPUT.BAS    (also found in examples directory)
Description:

The INPUT statement gets information from the user's terminal. The optional prompt string or a
question mark (?) is displayed on the CRT display line. The computer then waits until a reply is

entered from the keyboard and either CONTINUE or ENTER is pressed to enter a line of input. To
suppress the prompt, specify a prompt string of "".

Numeric variables can be simple scalar variables, full array variables, or subscripted array
elements. String variables can be simple string variables, array variables, string array elements
or sub-strings. An array may be entered in row major order using the full array specifier, "(*)".
Complex numbers are entered in rectangular form, first the real part and then the imaginary
part.

Leading and trailing spaces are ignored. Data values may be entered individually or multiple
values may be entered at once. If multiple values are entered, separate each value with a
comma. If too many values are entered, the extra values are ignored. Both quoted and unquoted
strings are allowed. Commas are not allowed in unquoted strings, but may appear in quoted
strings. To embed one quotation mark in a quoted string, type in two quotation marks at the
place you wish one to appear.

Two consecutive commas cause the corresponding variable to retain its old value. Terminating
an input line with a comma or pressing CONTINUE or ENTER without entering any data retains
the original values for all remaining variables in the list.

Live keyboard operations are not allowed while INPUT is waiting for data. ON KBD, ON KEY and
ON KNOB events are disabled during INPUT.

See Also:
DISP, ENTER, LINPUT, OUTPUT, PRINT, READ

INT

Performs the greatest integer function.
Syntax: INT(numeric-expression)

Sample: J4=INT(2.7)
K=INT(-2.7)
Gif=INT(Number)
PRINT "Greatest Integer Function =";INT(Y)
View Sample:    INT.BAS    (also found in examples directory)
Description:

INT obtains the greatest integer that is less than or equal to the value of its argument. For
positive numbers the effect is to truncate the fractional part (if any). For negative numbers, the
result is different than you might first expect. For example, the INT of 4.9 is 4, but the INT of -
4.9 is -5 since negative 5 is the largest integer less than negative 4.9.

Notice the differences among CINT, FIX and INT. CINT converts a REAL value to an INTEGER
value by substituting the closest INTEGER to the value. FIX returns the closest integral value
between the REAL value and zero. INT returns the closest integral value between the REAL
value and negative infinity. Also, CINT actually changes the type from REAL to INTEGER while
INT and FIX return integral results without changing the type. The following table helps illustrate
these differences:

Value x CINT(x) FIX(x) INT(x)
2.6 3 2.0 2.0
2.2 2 2.0 2.0
-2.2 -2 -2.0 -3.0
-2.6 -3 -2.0 -3.0

See Also:
ABS, CINT, DIV, DROUND, FIX, FRACT, MOD, MODULO, PROUND, SGN

INTEGER

Declares and dimensions INTEGER variables.
Syntax: INTEGER item [,item...]

where: item = numeric-name [(bounds) [BUFFER]]
bounds = [lower-bound :] upper-bound [,bounds]
bound = integer constant

Sample: INTEGER I,J,K
INTEGER A,J,Cnt,Point,X(100)
INTEGER Iarray(-128:127,16)
INTEGER Buff(600) BUFFER
View Sample:    INTEGER.BAS    (also found in examples directory)
Description:

The INTEGER statement is used to declare scalar and array variables of type integer. An
INTEGER variable uses two bytes of storage space. Integer variables conserve memory and
integer operations are faster than REAL. REAL is the default type. Bit by bit logical operations
may be performed on integer variables.

The maximum number of array dimensions is six and the lower bound must be less than or
equal to the upper bound value. Each dimension may contain a maximum of 32,767 elements.
An INTEGER variable may be declared a buffer by specifying the BUFFER keyword after the
variable name. Buffer variables are used with the TRANSFER statement.

Any number of INTEGER statements are allowed, anywhere in the program; however, an
INTEGER statement may not appear before an OPTION BASE statement. Memory allocation is
made during prerun and cannot be dynamically deallocated. However, the dimensions can be
changed in a limited way by REDIM. Use ALLOCATE and DEALLOCATE for dynamic memory
allocation.

See Also:
ALLOCATE, COM, COMPLEX, DIM, OPTION BASE, REAL, REDIM, TRANSFER

IPLOT

Moves the pen relative to its present location.
Syntax: IPLOT x-displacement, y-displacement [,pen-control]

IPLOT numeric-array(*) [,FILL] [,EDGE]

Sample: IPLOT 10,0
IPLOT Xdisp,Ydisp,Pen
IPLOT Picto(*),FILL,EDGE
View Sample:    IPLOT.BAS    (also found in examples directory)
Description:

The IPLOT statement moves the pen from its current position by the specified X and Y
displacements. The PIVOT and PDIR statements affect the IPLOT statement. See PLOT for a full
explanation of IPLOT arguments.

See Also:
AREA, CLIP, DRAW, IDRAW, IMOVE, MOVE, PLOT, POLYLINE, POLYGON, RPLOT

IVAL

Converts a binary, octal, decimal or hexadecimal string to an INTEGER.
Syntax: IVAL(string-expression, radix)

where: radix = numeric-expression rounded to an integer

Sample: Value=IVAL(Binary$,Two)
PRINT IVAL("FA50",16)
View Sample:    IVAL.BAS    (also found in examples directory)
Description:

IVAL is like VAL, in that a number in string form is converted to numeric form. Unlike VAL, which
can only convert decimal numbers, IVAL can convert numbers in binary, octal, decimal and
hexadecimal.

The string expression contains the number to be converted and the radix must be either 2, 8, 10
or 16. The characters in the string must be legal digits in the specified radix. For example, a
binary number can only have characters "0" and "1". Only decimal numbers are allowed to have
a minus sign preceding them.

The number expressed in the string is first converted to a 16 bit integer. If the most significant
bit is set, the result will be negative. Thus, the string must represent a number within the range
of a 16 bit signed integer. The range restrictions are as follows:

Radix Legal Range
binary 0 through 1111111111111111
octal 0 through 177777
decimal -32768 through 32767
hexadecimal 0 through FFFF

See Also:
DVAL, DVAL$, IVAL$, VAL, VAL$

IVAL$

Converts an INTEGER to a binary, octal, decimal or hexadecimal string.
Syntax: IVAL$(number, radix)

where: number, radix = numeric-expressions rounded to integers

Sample: Hex$=IVAL$(Number,Sixteen)
PRINT IVAL$(I,8)
View Sample:    IVAL$.BAS    (also found in examples directory)
Description:

IVAL$ is like VAL$, in that a numeric value is converted to string form. Unlike VAL$, which
always expresses numbers in decimal form, IVAL$ can also express numbers in binary, octal,
decimal and hexadecimal.

The number must be in the range -32768 to +32767 and the radix must be either 2, 8, 10 or 16.

The converted numbers have leading zeros as necessary to fill unused digit positions. A minus
sign is only produced for decimal numbers. The range of numbers produced is the same as those
accepted by IVAL.

See Also:
IVAL, DVAL, DVAL$, VAL, VAL$

KBD

Returns a 2, the device select code of the keyboard.
Syntax: KBD

Sample: STATUS KBD;Kbdstat
OUTPUT KBD;Clr$;
View Sample:    KBD.BAS    (also found in examples directory)
Description:

KBD is an INTEGER function which returns the constant (2), referring to the keyboard interface
select code. When referring to the keyboard, KBD is more mnemonic than the constant two.

See Also:
CRT, PRT

KBD$
 Returns the contents of the ON KBD buffer.

Syntax: KBD$

Sample: PRINT KBD$;
Buff$=Buff$&KBD$
A$=KBD$
View Sample:    KBD$.BAS    (also found in examples directory)
Description:

When ON KBD is enabled all keystrokes are trapped and held in the keyboard buffer. KBD$
returns the keyboard contents and then clears it. The buffer is also cleared by the commands:
OFF KBD, ENTER KBD, INPUT, LINPUT, SCRATCH and SCRATCH A and by the RESET key. If no key
was pressed or if ON KBD is disabled by OFF KBD, the string length is set to zero.

The keyboard buffer can store up to 256 characters. When the buffer is full entering more
characters generates a beep and discards the character. Function keys generate 2 bytes. The
first byte is 255 and the second byte specifies the function key.

See Also:
OFF KBD, ON KBD

KBD CMODE

Sets softkey compatibility mode.
Syntax: KBD CMODE {ON | OFF}

Sample: KBD CMODE OFF
IF Enable THEN KBD CMODE ON
View Sample:    KBD CMODE.BAS    (also found in examples directory)
Description:

KBD CMODE controls the softkey emulation mode. HTBasic emulates the ITF keyboard softkeys
by default, but can be changed to Nimitz keyboard softkey compatibility mode by using the KBD
CMODE ON statement. ITF keyboard softkey emulation can be restored by using the KBD
CMODE OFF statement.

The Nimitz keyboard is used on the 9836 system. It has ten softkeys, and the lowest softkey is
labeled k0. The softkey labels are displayed at the bottom of the screen in two rows. Each row
contains five labels; each label is 14 characters wide.

See Also:
EDIT KEY, KEY LABELS, KEY LABELS PEN, LIST KEY, LOAD KEY, OFF KEY, ON KEY, READ KEY,
SCRATCH, SET KEY, STORE KEY, USER KEYS

KBD LINE PEN

Sets the pen color for the input line.
Syntax:

KBD LINE PEN pen-number

Sample: KBD LINE PEN Pen
KBD LINE PEN 141
IF Green THEN KBD LINE PEN Greenpen
Description:

This command sets the pen color for the input line, message line, run indicator and edit screen.
KBD LINE PEN overrides any previous ALPHA PEN for these areas of the screen. The pen-
number is a numeric expression rounded to an integer. If you are using the bit-mapped display
driver legal values are from 0 to 15. (HP BASIC supports values to 255.) If you are using the non-
bit-mapped display driver, legal values are from 136 to 143. This statement is equivalent to
CONTROL CRT,17;pen-number.

See Also:
ALPHA PEN, KEY LABELS PEN, PRINT PEN

KEY LABELS

Controls the display of the softkey labels.
Syntax: KEY LABELS { ON|OFF }

Sample: KEY LABELS ON
IF Done THEN KEY LABELS OFF
View Sample:    KEY LABELS.BAS    (also found in examples directory)
Description:

The softkey labels are turned on and off. KEY LABELS ON is equivalent to CONTROLCRT,12;2.
KEY LABELS OFF is equivalent to CONTROLCRT,12;1.

See Also:
EDIT KEY, KBD CMODE, KEY LABELS PEN, LIST KEY, LOAD KEY, OFF KEY, ON KEY, READ KEY,
SCRATCH, SET KEY, STORE KEY, USER KEYS

KEY LABELS PEN
Sets the color for the softkey labels.

Syntax: KEY LABELS PEN pen-number

Sample: KEY LABELS PEN Pen
IF Crtb THEN KEY LABELS PEN 4
View Sample:    KEY LABELS PEN.BAS    (also found in examples directory)
Description:

This statement sets the color for the softkey menu. KEY LABELS PEN overrides any previous
ALPHA PEN for the color of the softkey menu. The pen-number is a numeric expression rounded
to an integer. If you are using the bit-mapped display driver legal values are from 0 to 15. (HP
BASIC supports values to 255.) If you are using the non-bit-mapped display driver, legal values
are from 136 to 143. This statement is equivalent to CONTROLCRT,16;pen-number.

See Also:
ALPHA PEN, KBD LINE PEN, PRINT PEN, OFF KEY, ON KEY, SET KEY

KNOBX

Returns and resets the KNOBX counter value.
Syntax: KNOBX

Sample: Xpulse=KNOBX
IF KNOBX<0 THEN Back
View Sample:    KNOBX.BAS    (also found in examples directory)
Description:

During an ON KNOB sampling interval, KNOBX counts the horizontal mouse pulses generated.
Movement of the mouse to the right gives positive counts. Movement in the opposite direction
gives negative counts. Once read, the count is cleared. If ON KNOB is not active, KNOBX returns
a 0.

See Also:
KNOBY, ON KNOB

KNOBY

Returns and resets the KNOBY counter value.
Syntax: KNOBY

Sample: Ypulse=KNOBY
IF KNOBY<0 THEN Up
View Sample:    KNOBY.BAS    (also found in examples directory)
Description:

During an ON KNOB sampling interval, KNOBY counts the vertical mouse pulses generated.
Upward mouse movement gives positive counts. Movement in the opposite direction gives
negative counts. Once read, the count is cleared. If ON KNOB is not active, KNOBY returns a 0.

See Also:
KNOBX, ON KNOB

LABEL

Prints text on graphic devices.
Syntax: LABEL [items [{,|;}]]

LABEL USING image [;items]

where: items = item [{,|;} item [{,|;} item...]]
item = string-expression |
string-array$(*) |
numeric-expression |
numeric-array(*)
image = line-number | line label | string-expression
See IMAGE for image syntax.

Sample: LABEL 6,Foobar$
LABEL Array(*)
LABEL USING 160;X,Y,Z
LABEL USING " ""$"",5*.DD";Money
View Sample:    LABEL.BAS    (also found in examples directory)
Description:

Labels are drawn with the pen beginning at the current pen position, in the current PEN color
and LINE TYPE. Labels are clipped at the clip boundary. The starting point for labels is affected
by PIVOT, CSIZE, GFONT IS, LORG, and LDIR affect the output of labels, however WINDOW and
SHOW do not.

Control Characters
The following control characters have a special meaning when used in LABEL statements:

Character Meaning
CTRL-H, CHR$(8) moves pen left one character cell.
CTRL-J, CHR$(10) moves pen down one character cell.
CTRL-M, CHR$(13) moves pen left length of completed label.

In other respects, the format of output from the LABEL statement, both with and without USING,
is similar to the PRINT command. See PRINT for an explanation of arrays, numeric and string
fields and numeric and string formats.

See Also:
CSIZE, GFONT IS, IMAGE, LDIR, LINE TYPE, LORG, PEN, PIVOT, PRINT, SYMBOL

LDIR

Sets the angle for drawing LABELs and SYMBOLs.
Syntax: LDIR angle

Sample: LDIR 270
LDIR ACS(A)
View Sample:    LDIR.BAS    (also found in examples directory)
Description:

The angle is a numeric-expression and is interpreted in the current trigonometric mode, radians
or degrees. The default is radians. A value of zero specifies drawing along the positive x-axis.
Positive values specify a counter-clockwise direction.

See Also:
CSIZE, DEG, LABEL, LORG, PIVOT, PDIR, RAD, SYMBOL

LEN

Returns the number of characters in a string.
Syntax: LEN(string-expression)

Sample: L=LEN("Four")
IF LEN(A$)=0 THEN Null

View Sample:    LEN.BAS    (also found in examples directory)

Description:
The LEN function evaluates the string expression and returns the number of characters in the
resulting string. If there is nothing in the string, the LEN function returns a zero value.

See Also:
CHR$, LWC$, MAXLEN, NUM, POS, REV$, RPT$, TRIM$, UPC$

LET

Assigns a value to a variable.
Syntax: [LET] numeric-name [(subscripts)] = numeric-expression

[LET] string-name$ [(subscripts)] [sub-string] = string-expression

where: subscripts = subscript [,subscript...]

Sample: LET X=4.2
LET A$="Data Value"
Carray(N+2)=Carray(N)/2
Dat$(5)[1;2]=CHR$(27)&"?"
View Sample:    LET.BAS    (also found in examples directory)
Description:

The LET keyword is optional. The variable can be a numeric scalar or a numeric array element, a
string, a string array element or a sub-string. It can appear on both sides of the equals sign. One
assignment is performed in a LET statement. Any other equal signs are relational operators in
expressions.

If the variable is of type INTEGER, the value of the numeric expression is rounded to an integer.
If the value is too large for an INTEGER, an error is generated.

If the string expression length is greater than the dimensioned length of the string, an error is
generated. If the assignment is to a sub-string, the string expression length is truncated or blank
filled on the right to fit the destination sub-string. If only the sub-string start position is given,
the string expression is assigned to the sub-string and the length of the string variable is set.

Use the MAT statement for array assignments.

See Also:
ALLOCATE, COM, DEALLOCATE, DIM, INTEGER, OPTION BASE, REAL

LEXICAL ORDER IS

Defines "alphabetical" order for string comparisons.
Syntax: LEXICAL ORDER IS option

where: option = STANDARD | ASCII | FRENCH | GERMAN |
SPANISH | SWEDISH | numeric-array(*)

Sample: LEXICAL ORDER IS ASCII
LEXICAL ORDER IS Mytable(*)
View Sample:    LEXICAL ORDER IS.BAS    (also found in examples directory)
Description:

This statement defines the lexical order of characters to match the alphabets of various
languages. The LEXICAL ORDER IS statement changes rules for collating order and
upper/lower case conversions. Normally, rules for five languages are built into HTBasic: ASCII,
FRENCH, GERMAN, SPANISH, and SWEDISH. (In HTBasic, LEXICAL ORDER IS STANDARD
is the same as LEXICAL ORDER IS ASCII).

The current LEXICAL ORDER can be determined with the SYSTEM$("LEXICAL ORDER IS")
function.

You may define your own LEXICAL ORDER rules using the LEXICAL ORDER IS Array(*) syntax.
The array is a one dimension INTEGER array of at least 257 elements which contains the rule
definitions. The User's Guide explains how to set the array elements to the define rules. In
addition to collating rules, HTBasic allows you to also specify upper/lower case conversion rules.

See Also:
LWC$, SYSTEM$, UPC$

LGT

Computes common (base 10) logarithms.
Syntax: LGT(numeric-expression)

Sample: N7=LGT(Xt*4+K)
PRINT "Log of ";Y;"=";LGT(Y)
Db=10*LGT(Watts)
View Sample:    LGT.BAS    (also found in examples directory)
Description:

The definition of common or base 10 or Briggsian logarithms is Y = LGT(X) where X = 10^Y. LGT
accepts either a COMPLEX or REAL argument and returns a value of the same type.

COMPLEX Arguments
For COMPLEX arguments LGT(Z) is calculated (using complex arithmetic) as

LGT(Z) = LOG(Z)/LOG(10)

The domain of LGT includes all points in the complex plane except the origin. However,
intermediate values generated during the calculation of the function can cause overflow or
underflow errors for very large or small values of Z.

See Also:
EXP, LOG, SQRT

LINE TYPE

Sets the style or dash pattern and repeat length of lines.
Syntax:

LINE TYPE type [,repeat]

where: type and repeat = numeric-expressions, rounded to integers.

Sample: LINE TYPE 5
LINE TYPE Style,Repeat
View Sample:    LINE TYPE.BAS    (also found in examples directory)
Description:

At start-up the default LINE TYPE is one (1) for solid lines. When the PLOTTER IS device is not
the CRT, the line types are device dependent. Refer to your device documentation. The repeat
factor is the GDU line length before the line pattern is repeated.

The CRT line types are:

Value Line Type
1 solid line (default setting)
2 dot at end of line
3 loosely spaced dots
4 closely spaced dots
5 dashes
6 dash, dot
7 large dash, small dash
8 dash, dot, dot
9 solid line, short line at end
10 solid line, long line at end

Under Windows not all line types are supported. Also, most drivers ignore the repeat value.

See Also:
DRAW, IDRAW, IPLOT, PLOT, POLYGON, POLYLINE, RECTANGLE, RPLOT

LINK

Makes a hard link to a file.
Syntax: LINK path1 TO path2 [;PURGE]

where: path1,path2 = file-specifiers

Sample: LINK "/diskless1/htb.hlp" TO "/diskless2/htb.hlp"
LINK Exists$ TO New$;PURGE

Description:
Path1 is a file specifier naming an existing file. Path2 is a file specifier naming a new directory
entry to be created. LINK automatically creates a new link (directory entry) for the existing file
and increments the link count of the file by one. If path2 already exists, an error is given unless
the PURGE option is included.

With hard links, both files must be on the same file system. Both the old and the new link share
equal access and rights to the underlying object. The super-user may make multiple links to a
directory. Unless the caller is the super-user, the file named by path1 must not be a directory.
LINK_MAX specifies the maximum allowed number of links to the file (see the UNIX man page for
pathconf(2V)).

Because a link merely establishes a second name for a single file, operations on that file are
effective for all the links to the file. In other words, if the file is changed using one of the
filenames, the changes are visible through all the other filenames linked to that file. (Note that
this general rule is true in all cases under HTBasic, but is not true under HP BASIC for RE-STORE
and RE-SAVE.)

Note: LINK is not supported by HTBasic, it will return an error.

See Also:
COPY, CREATE, PURGE

LINPUT

Reads alphanumeric keyboard input to a string.
Syntax: LINPUT ["prompt",] string-name$ [(subscripts)]

[sub-string]

where: prompt = string-literal
subscripts = subscript [,subscripts]

Sample: LINPUT "Choice?",D$
LINPUT Iarray$(I)[4]
View Sample:    LINPUT.BAS    (also found in examples directory)
Description:

The LINPUT statement gets one alphanumeric data item from the keyboard and assigns it to
the string variable. LINPUT values may consist of commas, quotation marks and leading and
trailing blanks.

The CRT display line will display a prompt while the LINPUT is active. If no prompt string is
specified a question mark is displayed. If a zero length string-literal is specified, "", the question
mark is suppressed. After entry completion, press ENTER.

During an LINPUT the ON KBD, ON KEY, and ON KNOB event definitions are deactivated.

See Also:
DISP, ENTER, INPUT, OUTPUT, PRINT, READ

LIST

Lists the program in memory to the selected device.
Syntax: LIST [#device-selector [;begin-line [end-line]]]

where: line = line-number | line-label

Sample: LIST
LIST #702
LIST 1500,Endtest
View Sample:    LIST.BAS    (also found in examples directory)
Description:

The LIST statement outputs the program to the PRINTER IS device. If a device selector is given
the output is directed to that device. The starting and ending program line numbers may be
specified to limit the portion of the program that is output. If the ending line number is not
specified, all lines from the start line number through the last line number are output.

After LISTing a program, the available memory in bytes is displayed on the message line.

See Also:
GET, LIST BIN, LIST KEY, LOAD, LOADSUB, SAVE, RE-SAVE, STORE, RE-STORE

LIST BIN

Lists each BIN currently in memory.
Syntax: LIST BIN [#device-selector]

Sample: LIST BIN
LIST BIN #PRT
View Sample:    LIST BIN.BAS    (also found in examples directory)
Description:

BIN files implement HTBasic extensions, such as device drivers. The LIST BIN statement prints
the name and version number of each BIN currently in memory. If a device selector is given, the
output is directed to that device, otherwise it is printed on the current PRINTER IS device.

Porting to HP BASIC:
LIST BIN is programmable in HTBasic, but not in HP BASIC.

See Also:
LIST, LIST KEY, LOAD BIN

LIST DLL
Lists the name of each Dynamic Link Library (DLL) currently in memory.

Syntax:

LIST DLL

Sample:

LIST DLL
LIST DLL #PRT

Description:

The LIST DLL lists the name of each Dynamic Link Library (DLL) function and variable currently in memory.

See Also:

DLL GET, DLL LOAD, DLL READ, DLL UNLOAD, DLL WRITE

LIST KEY

Lists the softkey macro definitions.
Syntax: LIST KEY [#device-selector]

Sample: LIST KEY
View Sample:    LIST KEY.BAS    (also found in examples directory)
Description:

The LIST KEY statement outputs the softkey definitions to the PRINTER IS device. If a device
selector is given the output is directed to that device. Only defined keys are listed. If the key
definition contains an embedded function key then the definition is printed in a special way. The
CHR$(255) of the function key is printed as "System Key:    ", the 2nd character of the function
key is printed and then a new line is started. After all definitions have been printed, the available
memory for softkey macros is displayed on the message line.

See Also:
EDIT KEY, KBD CMODE, LOAD KEY, OFF KEY, ON KEY, READ KEY, SCRATCH, SET KEY, STORE KEY,
USER KEYS

LOAD

Loads a user program into memory.
Syntax: LOAD file-specifier [,run-line]

where: run-line = line-number | line-label

Sample: LOAD Story$
LOAD "Utility",200
View Sample:    LOAD.BAS    (also found in examples directory)
Description:

LOAD gets a previously stored BASIC program into memory. When LOADing a program, the
current program and all variables not in COM are deleted. Each COM block in the new program is
compared to the old COM blocks in memory. Any mismatched or unreferenced COM blocks are
deleted. If LOAD is used in a program, the newly loaded program begins running at either the
first line or the specified line. If LOAD is used as a keyboard command and the run line is
specified, the program begins running at that line or the next higher line.

PROG files are transportable between different types of computers running HTBasic only if the
computers use the same byte ordering. For example, the DOS and Windows versions of HTBasic
can share PROG files.   

Porting Issues
HTBasic does not support HP BASIC PROG files. To move programs between HTBasic and HP
BASIC, LOAD the PROG file, SAVE it as an ASCII file, move the program over, GET the ASCII file
and STORE it back.

See Also:
GET, LIST, LOAD BIN, LOAD KEY, LOADSUB, SAVE, RE-SAVE, STORE, RE-STORE

LOAD BIN

Loads a BIN system program file into memory.
Syntax: LOAD BIN "bin-name [;options] "

where: bin-name = file-specifier without extension
options = bin specific option string

Sample: LOAD BIN "GPIBN;BOARD AT-GPIB"
LOAD BIN "SERIAL"
View Sample:    LOAD BIN.BAS    (also found in examples directory)
Description:

The LOAD BIN statement loads a BIN system file into memory. BIN files implement HTBasic
extensions, such as device drivers. Up to 16 I/O drivers may be loaded. The following three
locations are searched for the file, in the order given:

1. The directory specified by the HTB environment variable, if an HTB environment variable
exists.
2. The current directory.
3. The directory containing the HTBasic executable.

Some BIN files allow options to be specified. The legal options are different for each device
driver; consult the device driver documentation to determine the legal options. Documentation
for the standard device drivers included with HTBasic can be found in the Installing and Using
manual. Documentation for separately available device drivers comes with the driver.

If an error occurs while loading a device driver, it will not be loaded. Often, when an error is
detected, more explicit diagnostic information can be obtained by pressing the PRT ALL key to
turn print-all mode on (see PRINTALL IS) and retrying the statement LOAD BIN.

Under HTBasic, STORE SYSTEM is not an alternative; you must use LOAD BIN.

Usage Notes
The search locations for the windows version are:

1. The directory from which the application loaded.
2. The current directory.
3. The Windows system directory (such as \WINNT\SYSTEM32).
4. The Windows directory.
5. The directories listed in the PATH environment variable.

See Also:
LIST BIN, SCRATCH BIN, STORE SYSTEM

LOAD KEY

Loads softkey macro definitions into memory.
Syntax: LOAD KEY [file-specifier]

Sample: LOAD KEY "DEF"
View Sample:    LOAD KEY.BAS    (also found in examples directory)
Description:

The LOAD KEY statement loads softkey macro definitions into memory from a file. Executing
LOAD KEY without the file specifier resets the softkey definitions to their start-up defaults.

See Also:
EDIT KEY, KBD CMODE, KEY LABELS, KEY LABELS PEN, LIST KEY, OFF KEY, ON KEY, READ KEY,
SCRATCH, SET KEY, STORE KEY, USER KEYS

LOADSUB
Loads a BASIC subprogram into memory.

Syntax: LOADSUB [context] FROM file-specifier

where: context = ALL | subprogram-name | FN function-name[$] |
string-expression

Sample: LOADSUB Peek FROM "PEEK.COM"
LOADSUB FROM "Testfile"
LOADSUB FNSearch$ FROM "Sarfile"
LOADSUB ALL FROM Myfile$
LOADSUB Subptr$ FROM "ROUTINES.LIB"
View Sample:    LOADSUB.BAS    (also found in examples directory)
Description:

The LOADSUB statement loads subprograms at the end of the current program. It re-numbers
the incoming subprogram lines. After loading a subprogram it also preruns the subprogram to
check for COM block mismatches.

If ALL is specified, all subprograms in the file are loaded into memory. If a subprogram name is
specified (either explicitly or in a string expression), only that subprogram is loaded into
memory. These forms of LOADSUB are programmable.

LOADSUB FROM (no context specified) looks through a program and loads all subprogram
references not yet in memory. The newly loaded subprograms are also looked through and any
additional subprogram references not yet in memory are located and loaded into memory. After
LOADSUB FROM has executed, if any subprogram references were not loaded into memory, an
error is generated along with a listing of the subprogram names. LOADSUB FROM is not
programmable.

Subprogram Pointer
If a string expression specifies the subprogram name in the LOADSUB statement, the string
expression is called a subprogram pointer because it "points" to the subprogram rather than
explicitly naming it. As the expression changes, the pointer points to different subprograms. The
following example illustrates how this can be useful.

10 SUB Xform(X(*))
20 Method$="Xform"&VAL$(RANK(X))
30 IF NOT INMEM(Method$) THEN LOADSUB Method$
40 CALL Method$ WITH(X(*))
50 DELSUB Method$
60 SUBEND

The subprogram pointer must be specified with the initial character in uppercase and
subsequent characters in lowercase. Subprogram pointers can also be used in CALL, DELSUB,
INMEM, and XREF statements.

Porting to HP BASIC:
The use of subprogram pointers in LOADSUB is a new HTBasic feature that is not available in HP
BASIC. It should not be used in programs that must be ported back to HP BASIC.

See Also:
CALL, DELSUB, INMEM, RE-STORE, STORE

LOCAL

Returns specified IEEE-488 devices to their local state.
Syntax: LOCAL {@io-path | device-selector}

Sample: LOCAL @Dvm
LOCAL Isc
LOCAL 728
Description:

If a primary device address is specified, a Go To Local (GTL) message is sent to all listeners and
LOCAL LOCKOUT is not canceled. If only an interface select code is specified, all devices on the
bus are returned to the local state and LOCAL LOCKOUT is canceled.

If a primary device address is specified and the computer is the Active Controller, the bus
activity is: ATN, MTA, UNL, LAG, GTL.

If the computer is not the Active Controller but is the System Controller and just an interface
select code is specified, the REN line is set false. If it is also the Active Controller the ATN and
REN lines are both set false.

When the computer is not the System Controller but is the active controller, the bus activity for
an Interface Select Code is to set the ATN line and send a GTL message.

See Also:
ABORT , CLEAR, PASS CONTROL, PPOLL, REMOTE, REQUEST, SEND, SPOLL, TRIGGER

LOCAL LOCKOUT

Sends the IEEE-488 LLO message.
Syntax: LOCAL LOCKOUT {@io-path | interface-select-code}

Sample: LOCAL LOCKOUT 7
LOCAL LOCKOUT Isc
LOCAL LOCKOUT @Gpib
Description:

The local lockout message LLO is sent over the IEEE-488 preventing front panel control of
devices in the remote state.

If the computer is not the active controller or a primary device address is specified, an error is
generated. If an I/O path is specified, it must refer to the IEEE-488 interface.

See Also:
ABORT, CLEAR, LOCAL, PASS CONTROL, PPOLL, REMOTE, REQUEST, SEND, SPOLL, TRIGGER

LOCK

Secures a file for exclusive access.
Syntax: LOCK @io-path; CONDITIONAL return

where: io-path = name assigned to a file
return = numeric-name

Sample: LOCK @Proprietary;CONDITIONAL Result
IF Secure THEN LOCK @Keyfile;CONDITIONAL Ok
View Sample:    LOCK.BAS    (also found in examples directory)
Description:

This command attempts to LOCK a file to prevent other users from accessing the file while you
are using it. The return value is zero if the file is successfully LOCKed and non-zero if the LOCK
fails. The value returned is an error number, indicating why the LOCK failed. An ASSIGN @Path
TO * will UNLOCK and then close the file.

File locking capabilities depend on the operating system HTBasic is running on. If the operating
system does not support it, the result value will always indicate failure. Some operating systems
require the LOCK request when the file is opened. On such a system, the file will be closed and
re-opened with the LOCK.

A file can have multiple locks on it. The file remains locked until a corresponding number of
UNLOCK statements have been executed. LOCKing a file should be a temporary action of short
duration so that fair access to the file is provided to all network users.

See Also:
ASSIGN, UNLOCK

LOG

Computes natural (base "e") logarithms.
Syntax: LOG(numeric-expression)

Sample: LN=LOG(Dt4)
PRINT "LN(";X;") =";LOG(X)
View Sample:    LOG.BAS    (also found in examples directory)
Description:

The definition of natural or base "e" or Naperian logarithms is Y = LOG(X), where X = EXP(Y). "e"
is an irrational number whose value is approximately 2.718 281 828 459 05.

COMPLEX Arguments
LOG accepts either a COMPLEX or REAL argument and returns a value of the same type. For
COMPLEX arguments the real and imaginary parts of LOG(Z) are calculated (using real
arithmetic) as

REAL(LOG(Z)) = LOG(ABS(Z))
IMAG(LOG(Z)) = ARG(Z)

which returns an imaginary part in the range -PI to PI, regardless of the current trigonometric
mode. The domain of LOG includes all points in the complex plane except the origin. However,
intermediate values generated during the calculation of the function can cause over or
underflow errors for very large or small values of Z.

See Also:
EXP, LGT, SQRT

LONG
Declares, dimensions and reserves memory for Long integers between -2,147,483,648 and 2,147,483,647.

Syntax:

LONG item [,item...]

where:

item = numeric-name [(bounds) [BUFFER]]
bounds = [lower-bound :] upper-bound [,bounds]
bound = integer constant

Sample:

LONG I,J,K
LONG A,J,Cnt,Point,X(100)
LONG Aarray(-128:127,16)
LONG Buff(600) BUFFER

Description:

LONG is a data type. Other data types are I/O path, integer, real, complex, and string. LONG declares,
dimensions and reserves memory for integers between -2,147,483,648 and 2,147,483,647. LONG variables
can be declared and used in exactly the same ways that INTEGER variables are used. The only difference is
the range of values allowed.

See Also:

COMPLEX, INTEGER, REAL

LOOP

Defines a series of statements to be executed repeatedly.
Syntax: LOOP

statements
[EXIT IF boolean-expression]
statements
END LOOP

where: statements = zero, one or more program statements

Sample: 100 LOOP
. . .
170 EXIT IF J=5 OR A$>B$
. . .
180 END LOOP
View Sample:    LOOP.BAS    (also found in examples directory)
Description:

When control reaches the END LOOP statement, it is transferred back to the statement
following the LOOP statement until an EXIT IF statement evaluates non-zero. There may be any
number of EXIT IF statements in the LOOP. Branching into a LOOP is legal.

See Also:
CALL, END, FN, FOR, GOTO, GOSUB, IF, ON, PAUSE, REPEAT, RETURN, RUN, SELECT, STOP,
SUBEND, SUBEXIT, WAIT, WHILE

LORG

Specifies the position of a LABEL relative to the current position.
Syntax: LORG numeric-expression

Sample: LORG Origin
LORG 2
View Sample:    LORG.BAS    (also found in examples directory)
Description:

The LORG statement specifies the relative position of the LABEL with respect to the current pen
position. The argument is rounded to an integer and has a range of one through nine. The
default LORG origin is one. The values are as follows:

Left Values Middle Values Right Values
3 - left-top 6 - middle-top 9 - right-top
2 - left-center 5 - middle-center 8 - right-center
1 - left-bottom 4 - middle-bottom 7 - right-bottom

If the string length is odd, the horizontal center of the string is the center of the middle
character.

See Also:
CSIZE, IMAGE, LABEL, LDIR, LINE TYPE, PDIR, PEN, PIVOT, PRINT, SYMBOL

LWC$
 Converts characters in a string to lowercase.

Syntax: LWC$(string-expression)

Sample: A$=LWC(B$)
PRINT LWC$(Answer$)
View Sample:    LWC$.BAS    (also found in examples directory)
Description:

The upper-case to lower-case correspondence is affected by LEXICAL ORDER IS. If a user-defined
table is used with LEXICAL ORDER IS and the optional upper and lowercase conversion rules are
not specified, the uppercase to lowercase transform is determined by the STANDARD lexical
order.

See Also:
CHR$, LEN, LEXICAL ORDER IS, MAXLEN, NUM, POS, REV$, RPT$, TRIM$, UPC$, VAL, VAL$

MASS STORAGE IS

Assigns the current mass storage device and directory.
Syntax: MASS STORAGE IS path-specifier

MSI path-specifier

Sample: MASS STORAGE IS Volspec$&Dir_path$
MSI "A:\DIR1\DIR2\MYDIR"
MSI "/usr/bin" CD "/usr/bin"
View Sample:    MASS STORAGE IS.BAS    (also found in examples directory)
Description:

The current MASS STORAGE IS includes both the device, and the current directory. This current
directory is searched first to find any specified files. You may change the current device and
directory with the MSI command. You may determine the current device and directory with the
SYSTEM$("MSI") function.

MASS STORAGE IS may be abbreviated MSI or CD.

See Also:
CAT, CONFIGURE MSI, COPY, CREATE, INITIALIZE, PRINT LABEL, PROTECT, PURGE, READ LABEL,
RENAME, SYSTEM$("MSI")

MAT

Specifies an array operation.
Syntax: MAT string-array$ = string-array$ | (string-expression)

MAT numeric-array = numeric-array [operator numeric-array]
MAT numeric-array = (numeric-expression) [operator numeric-array]
MAT numeric-array = numeric-array operator (numeric-expression)
MAT vector = RSUM(matrix) | CSUM(matrix)
MAT matrix = INV(matrix) | TRN(matrix) | IDN
MAT array-name [sub-array] = array-name [sub-array]

COMPLEX Extensions:
MAT array-name = REAL(array-name)
MAT array-name = IMAG(array-name)
MAT array-name = ARG(array-name)
MAT array-name = ABS(array-name)
MAT array-name = CONJG(array-name)
MAT array-name = CMPLX(array-name,array-name)

where: operator = + | - | . | / | < | <= | = | <> | >= | > | *
sub-array = ({range | subscript} [, {range | subscript}...])
range = * | lower-bound : upper-bound

Sample: MAT A=A*(Pny*6)
MAT A=B+C
MAT A=C>=(1)
MAT A=(4)
MAT A=CSUM(C)
MAT A=RSUM(D)
MAT A=IDN
MAT A=INV(B)
MAT Destination(3,*,*)=Source(*,2,*)
View Sample:    MAT.BAS    (also found in examples directory)
Description:

MAT initializes and performs operations on string and numeric arrays. MAT operations can copy
a string or numeric expression or array into an array, add or subtract an array or numeric
expression to an array or numeric expression, multiply or divide an array or numeric expression
by an array or numeric expression, compare arrays and numeric expressions or perform an
identity (IDN), inverse (INV), sum (CSUM or RSUM) or transpose (TRN) of rows and columns of
a matrix. MAT operations can also be used to assign a sub-array to another array or sub-array.

The REAL, IMAG, ARG, ABS, CONJG and CMPLX functions operate the same with arrays as with
scalar numbers.

Size and Shape Requirements
In general, a matrix must meet certain size and shape requirements for each matrix operation. If
it does not, in certain operations it makes sense to automatically redimension it. If it can't be
redimensioned, an error is given.

Sub-array assignments require that the number of ranges specified in the source match the
number of ranges specified in the destination. If a complete array is specified, the number of
ranges equals the rank of the array. In corresponding ranges of the source and destination, the
number of elements must be the same. The following examples will help you visualize these
rules:

10 DIM X(1:3),Y(1:10)
20 DIM D(3,4,5),S(4,2,5)
30 MAT X=Y(2:4) ! One range, three elements
40 MAT D(3,*,*)=S(*,2,*) ! Range 1 has 5 elements,2 has 6
50 MAT Y(1:6)=S(0,0,*) ! One range, 6 elements

For the list of operators above, the target array must be the same size and shape as the source
array because numeric operations are performed one array element at a time and the result is
returned to the corresponding element in the target array.

Matrix Multiply
The asterisk "*" operator performs a matrix multiplication when it is between two matrices. If it
is between an array and a numeric expression each element of the array is multiplied by the

value of the expression. The period "." operator is used between two arrays to perform an
element by element multiply. Vectors can be used in a matrix multiplication as if they were two-
dimensional matrices. If used as the first matrix, a vector is treated as a 1 by N matrix. If used
as the second matrix, a vector is treated as an N by 1 matrix.

Sum Columns, Rows
The CSUM and RSUM matrix functions sum the columns and rows, respectively, of a matrix and
return the result into a target vector array.

Identity
The IDN matrix function initializes a square matrix to an identity matrix. An identity matrix has
zeros in all elements but the diagonal elements, which have the value one.

Invert
The INV matrix function returns the inverse of a square matrix. It also calculates the DET value.
If the matrix has no inverse, the DET is set to zero, but no error is returned. If the DET is very
small in relation to values of the array, numerical methods for inverting the array fail. Thus, the
DET should be checked after using INV.

Transpose
The TRN matrix function returns the transpose of the source matrix by exchanging rows for
columns and columns for rows.

See Also:
DET, DIM, DOT, MAT REORDER, MAT SEARCH, MAT SORT, REDIM, SUM

MAT REORDER

Reorders array elements by a supplied subscript list.
Syntax: MAT REORDER array-name[$] BY vector [, subscript]

Sample: MAT REORDER Array BY Vector,2
MAT REORDER Elements$ BY New
View Sample:    MAT REORDER.BAS    (also found in examples directory)
Description:

The array is reordered according to the values in the vector. The optional subscript is rounded to
an integer and specifies which subscript is to be reordered. If it is not specified it is assumed to
be one.

The vector must be a one dimensional array which is the same size as the specified subscript. It
contains integers specifying valid subscript values with no duplicate values. The MAT SORT
statement may be used to generate vector values.

COMPLEX Arrays
MAT REORDER can reorder a complex array, but a reorder vector can not be complex.

See Also:
MAT, MAT SEARCH, MAT SORT, REDIM

MAT SEARCH

Searches an array for user specified conditions.
Syntax: MAT SEARCH numeric-array [num-key], rule; return [,start]

MAT SEARCH string-array$ [str-key], rule; return [,start]

where: num-key = [search-subscripts] [DES]
str-key = [search-subscripts [sub-string]] [DES]
search-subscripts = ({subscript|*} [,...])
The '*' must appear only once.
rule = [#]LOC ([relational] value) | LOC MAX | LOC MIN | MIN | MAX
relational =    < | <= | = | <> | => | >
return = variable-name
start = numeric-expression
value = string-or-numeric-expression

Sample: MAT SEARCH Vector,#LOC(<>PI);Not_pi
MAT SEARCH Temperature,LOC MAX;Hottest
MAT SEARCH Students,LOC(<.33);Flunk,4
MAT SEARCH Titles$(*,2,3) DES,MAX;Last_book$
MAT SEARCH Array$(*), LOC(=Target$);I
View Sample:    MAT SEARCH.BAS    (also found in examples directory)
Description:

A numeric or string array is searched for the specified condition and the result is returned in the
return variable. The keyword DES specifies descending search order. The optional start value
specifies the starting subscript. If not specified, searching begins with the first element for
ascending searches and the last element for descending searches. The "rule" specifies the
search rules to use and what to return:

Rule Meaning
LOC Subscript of first element satisfying operator
#LOC Count the number of elements satisfying operator
LOC MAX Subscript of maximum value
LOC MIN Subscript of minimum value
MAX Find and return the maximum value
MIN Find and return the minimum value

COMPLEX Arrays
MAT SEARCH can search an array, but since the concept of linear ordering does not apply to
the complex plane, greater than, less than, MIN and MAX operations are not allowed.

See Also:
MAT, MAT REORDER, MAT SORT, REDIM

MAT SORT

Sorts string or numeric array data.
Syntax: MAT SORT numeric-array numeric-keys [TO vector]

MAT SORT string-array$ string-keys [TO vector]

where: numeric-keys = (key-subscripts) [DES] [,numeric-keys]
key-subscripts = {subscript | *} [,key-subscripts]
The '*' must appear only once.
string-keys = string-key [,string-keys]
string-key = (key-subscripts) [sub-string] [DES]

Sample: MAT SORT A$(*)
MAT SORT Array(Tag,*)
MAT SORT Vals(1,*,3),(2,*,5) DES
MAT SORT String$(*,2)[1;3] TO Order
View Sample:    MAT SORT.BAS    (also found in examples directory)

Description:
MAT SORT sorts a numeric or string array along one dimension. The direction of the sort is in
ascending order unless the DES keyword follows the key specifier. For multi-dimensioned arrays,
entire rows, columns, etc. are swapped in the ordering process according to the values in the
sort key specifier.

The sort key specifier is made up of subscript values and an asterisk "*". The asterisk specifies
the dimension to be sorted. The subscript values specify which array elements in that subscript
are to be used during the sort. Sub-strings may be specified for string arrays.

The optional "TO vector" syntax stores the new order in a vector, leaving the original array
unchanged. The vector is redimensioned to the size of the array dimension sorted. It is
compatible with the MAT REORDER statement. It is best if the vector is an INTEGER array.

COMPLEX Arrays
MAT SORT can not sort a complex array since the concept of linear ordering does not apply to
the complex plane. A complex array can be sorted indirectly by creating a REORDER vector that
sorts the complex array according to some linear property of complex numbers, such as
magnitude. In the following example, lines 90 to 110 sort the complex array C(*) according to
magnitude. A similar technique can be used for other sorting criteria.

 10 COMPLEX C(1:8)
 20 REAL Abs(1:8)
 30 INTEGER I,Order(1:8)
 40 FOR I=1 TO 8 !Create array to sort
 50 C(I)=CMPLX(INT(RND*10),INT(RND*10))
 60 NEXT I
 70 PRINT USING "2(K,2X),/";C(*)
 80 ! Now sort by magnitude
 90 MAT Abs=ABS(C)
100 MAT SORT Abs(*) TO Order
110 MAT REORDER C BY Order
120 ! Print the result
130 FOR I=1 TO 8
140 PRINT C(I),ABS(C(I))
150 NEXT I
160 END

See Also:
MAT, MAT REORDER, MAT SEARCH, REDIM

MAX

Returns the maximum value of a list of expressions.
Syntax: MAX(item [,item...])

where: item = numeric-expression | numeric-array(*)

Sample: I=MAX(4,X,Y)
Largest=MAX(numerals(*))
PRINT MAX(First,20,Last/3)
Cost=MAX(Win1,Win2,Lose1)
View Sample:    MAX.BAS    (also found in examples directory)
Description:

The MAX numeric function returns the largest value of all the values in the argument list. If an
item is an array it is treated as if each element in the array were an item.

See Also:
MIN

MAXLEN

Gets maximum declared length of a string variable.
Syntax: MAXLEN(string-name$ [(*)|(subscripts)])

Sample: MAXLEN(Newstring$)
Rows=MAXLEN(Alpharray$(*))
View Sample:    MAXLEN.BAS    (also found in examples directory)
Description:

MAXLEN returns the declared length of the string variable as declared in an ALLOCATE, COM or
DIM statement or an implicitly declared string variable.

See Also:
BASE, DIM, RANK, SIZE

MAXREAL

Returns the largest positive REAL number.
Syntax: MAXREAL

Sample: IF X>MAXREAL/Y THEN GOTO Overflow
View Sample:    MAXREAL.BAS    (also found in examples directory)
Description:

MAXREAL returns the largest positive REAL number that the computer can represent in its
floating point number system. On computer systems that use the IEEE floating point number
standard, the largest positive REAL number is approximately 1.797 693 134 862 32E+308.

See Also:
MINREAL

MERGE ALPHA WITH GRAPHICS

Enables all planes for Alpha and Graphics.
Syntax: MERGE ALPHA [WITH GRAPHICS]

Sample: IF Conf=4 THEN MERGE ALPHA WITH GRAPHICS
View Sample:    MERGE ALPHA WITH GRAPHICS.BAS    (also found in examples directory)
Description:

This statement is the opposite of SEPARATE ALPHA FROM GRAPHICS. When merged, all bit-
planes are used by both alpha and graphics. This means that alpha text is converted to graphic
pixels and written into the graphic planes, overwriting any graphics data that might be present.
Also, scrolling alpha text will scroll graphics, dumping either will dump both and the full range of
colors are available for both alpha text and graphic output. MERGE ALPHA is the default mode.

See Also:
ALPHA, GRAPHICS, PLOTTER IS, SEPARATE ALPHA

MIN

Returns the minimum value of a list of expressions.
Syntax: MIN(item)

where: item = numeric-expression | numeric-array(*)

Sample: I=MIN(4,3)
Small=MIN(Numerals(*))
PRINT MIN(First,20,Last/3)
View Sample:    MIN.BAS    (also found in examples directory)
Description:

The MIN numeric function returns the smallest value of all the items in the argument list. An
array is treated as if all its elements were listed as items.

See Also:
MAX

MINREAL

Returns the smallest positive REAL number.
Syntax: MINREAL

Sample: IF X<MINREAL*Y THEN GOTO Underflow
View Sample:    MINREAL.BAS    (also found in examples directory)
Description:

MINREAL returns the smallest positive REAL number that the computer can represent in its
floating point number system. On computer systems that use the IEEE floating point number
standard, the smallest positive REAL number is approximately 2.225 073 858 507 24E-308.

See Also:
MAXREAL

MOD

Returns remainder after integer division.
Syntax: dividend MOD divisor

Sample: I=D MOD 16
PRINT "Inches"=";Length MOD 12
View Sample:    MOD.BAS    (also found in examples directory)
Description:

X MOD Y is the remainder from a division which produces an integral quotient and is defined as
X - Y * (X DIV Y). If one or both of the operands are REAL, the result is REAL; otherwise the result
is INTEGER. The difference between MOD and MODULO is explained in MODULO.

See Also:
DIV, INT, MODULO

MODULO

Returns the true mathematical modulus.
Syntax: dividend MODULO modulus

Sample: I=D MODULO 16
PRINT "Inches" =";Length MODULO 12
R=12 MODULO –5
View Sample:    MODULO.BAS    (also found in examples directory)
Description:

X MODULO Y is defined as X - Y * INT(X/Y), where INT(X/Y) is the greatest integer less than or
equal to X/Y. MODULO and MOD give the same result if both X and Y have the same sign, but
differ if X and Y do not have the same sign. It can be seen why this is so from the definitions. (X
DIV Y) divides and then converts to integer by truncation toward zero. INT(X/Y) divides and then
converts to integer by truncation toward negative infinity.

See Also:
INT, MOD

MOVE

Moves the logical and physical pens to a new position.
Syntax: MOVE x-position, y-position

where: x-position, y-position = numeric-expressions

Sample: MOVE 25,80
MOVE Newx,Newy
View Sample:    MOVE.BAS    (also found in examples directory)
Description:

The pen is raised before being moved to the specified position. If both the current logical
position and the specified position are outside the clip area the logical position is updated but no
physical pen movement is made.

The PIVOT statement affects the MOVE statement.

See Also:
CLIP, DRAW, IDRAW, IMOVE, IPLOT, LINE TYPE, PIVOT, PLOT, RPLOT, SHOW, VIEWPORT, WINDOW

MOVELINES

Moves program lines from one location to another.
Syntax: MOVELINES start [,end] TO target

where: start, end and target = line-number | line-label

Sample: MOVELINES 600 TO 1500
MOVELINES 500,1200 TO 4100
MOVELINES First,Second TO Target

Description:
MOVELINES moves a block of lines to a new location. This differs from the COPYLINES
statement in that COPYLINES makes a copy of the original program portion. If no ending line is
specified, only one line is moved. The target line cannot be in the range specified by start and
end. If start doesn't exist, the line immediately after that line number is used. If end doesn't
exist, the line immediately before that line number is used. If a non-existent line label is
specified, an error will be reported. If the arguments specify a destination line number or
program section that already exists, the old section will be renumbered to make room for the
new program lines.

Line numbers and labels are renumbered and updated if needed. MOVELINES may not move
lines containing a SUB program or DEF FN definition unless the new line number is greater than
any existing line number; otherwise an error is issued because SUB or DEF FN must follow all
previous lines. If an error occurs during a MOVELINES, the copy is terminated and the program
is left partially changed. This command can only be executed from the keyboard. It cannot be
included in a program.

See Also:
CHANGE, COPYLINES, DEL, DELSUB, EDIT, FIND, INDENT, REN, SECURE, XREF

NOT

Returns the logical negation of an expression.
Syntax: NOT numeric-expression

Sample: A=NOT 1
A=NOT B
IF NOT File_input THEN PRINT Prompt$
View Sample:    NOT.BAS    (also found in examples directory)
Description:

If the argument is zero, NOT returns a one. If the argument is non-zero, NOT returns a zero.

See Also:
AND, OR, EXOR

NPAR

Returns number of parameters passed to a subprogram.
Syntax: NPAR

Sample: IF NPAR>5 THEN More
Global=NPAR-3
View Sample:    NPAR.BAS    (also found in examples directory)
Description:

NPAR is useful in subprograms with OPTIONAL parameters. NPAR can be used to determine
which parameters were present in the calling argument list. An attempt to use a parameter
which was not present results in an error. In the main program, NPAR returns a zero.

See Also:
CALL, DEF FN, FN, SUB

NUM

Returns the decimal ASCII equivalent of the first character in a string.
Syntax: NUM(string-expression)

Sample: A=NUM(B$)
A=NUM("0")
N=NUM(Alph$)
B=NUM(B$[V])/16
View Sample:    NUM.BAS    (also found in examples directory)
Description:

The range of the returned values is 0 through 255.

See Also:
CHR$, LWC$, REV$, RPT$, POS, TRIM$, UPC$, VAL, VAL$

OFF CYCLE

Cancels event branches defined by ON CYCLE.
Syntax: OFF CYCLE

Sample: OFF CYCLE
IF Complete THEN OFF CYCLE
View Sample:    OFF CYCLE.BAS    (also found in examples directory)
Description:

Any CYCLE events that have been logged but not yet serviced, are canceled.

Execution of an OFF CYCLE statement within a subprogram will disable the ON CYCLE definition
within the context of the subprogram, but when control is returned to the calling program the
ON CYCLE definition is re-enabled.

See Also:
ENABLE, DISABLE, ON CYCLE, SYSTEM PRIORITY

OFF DELAY

Cancels event branches defined by ON DELAY.
Syntax: OFF DELAY

Sample: OFF DELAY
IF Finish THEN OFF DELAY
View Sample:    OFF DELAY.BAS    (also found in examples directory)
Description:

Any DELAY events that have been logged but not yet serviced, are canceled.

Execution of an OFF DELAY statement within a subprogram will disable the ON DELAY definition
within the context of the subprogram, but when control is returned to the calling program the
ON DELAY definition is re-enabled.

See Also:
ENABLE, DISABLE, ON DELAY, SYSTEM PRIORITY

OFF END

Cancels event branches defined by ON END.
Syntax: OFF END @io-path

where: io-path = name assigned to a data file

Sample: OFF END @File
IF Finish THEN OFF END @Input
View Sample:    OFF END.BAS    (also found in examples directory)
Description:

Execution of an OFF END statement within a subprogram will disable the ON END definition
within the context of the subprogram, but when control is returned to the calling program the
ON END definition is re-enabled.

End-of-file and end-of-record errors will be reported if no ON END definition is active.

See Also:
ENABLE, DISABLE, ON END, SYSTEM PRIORITY

OFF EOR

Cancels event branches defined by ON EOR.
Syntax: OFF EOR @non-buf-io-path

where: non-buf-io-path = io-path used in the ON EOR statement

Sample: OFF EOR @Dev
IF Finish THEN OFF EOR @File
Description:

Any End-of-Record (EOR) events that have been logged but not yet serviced, are canceled.
Executing OFF EOR within a subprogram disables the ON EOR definition within that subprogram
context. When control is returned to the calling program, any pre-existent ON EOR definition is
re-enabled.

See Also:
ABORTIO, ON EOR, ON EOT, TRANSFER, WAIT

OFF EOT

Cancels event branches defined by ON EOT.
Syntax: OFF EOT @non-buf-io-path

where: non-buf-io-path = io-path used in the ON EOT statement

Sample: OFF EOT @Dev
IF Finis THEN OFF EOT @File
Description:

Any End-of-Transfer (EOT) events that have been logged but not yet serviced, are canceled.
Executing OFF EOT within a subprogram disables the ON EOT definition within that subprogram
context. When control is returned to the calling program, any pre-existent ON EOT definition is
re-enabled.

See Also:
ABORTIO, ON EOR, ON EOT, TRANSFER, WAIT

OFF ERROR

Cancels event branches defined by ON ERROR.
Syntax: OFF ERROR

Sample: IF Finish THEN OFF ERROR
View Sample:    OFF ERROR.BAS    (also found in examples directory)
Description:

Execution of an OFF ERROR statement will cause any subsequent errors to be reported to the
user and program execution will PAUSE.

See Also:
ENABLE, DISABLE, ON INTR, SYSTEM PRIORITY

OFF EVENT
Cancels event branches defined by ON EVENT.

Syntax: OFF EVENT

Sample: OFF EVENT @Pushbutton_3,"ACTIVATED"
OFF EVENT @Slider, “DONE”

Description:

The OFF EVENT statement undefines and disables a widget event that was defined and enabled earlier by an
ON EVENT statement. There are three important differences between the OFF EVENT and DISABLE EVENT
statements:

· DISABLE EVENT temporarily disables the event, whereas OFF EVENT permanently deactivates the
event.

· Only one occurrence of the event will be logged if the event is disabled with a DISABLE EVENT
statement. Therefore, the branch will be taken once the event is re-enabled with an ENABLE EVENT
statement.

· The event will NOT be logged and the branch will never be taken if the event is deactivated with an OFF
EVENT statement.

See Also:

ENABLE EVENT, DISABLE EVENT, ON EVENT

OFF INTR

Cancels event branches defined by ON INTR.
Syntax: OFF INTR [interface-select-code]

Sample: OFF INTR
OFF INTR 10
OFF INTR Gpib
View Sample:    OFF INTR.BAS    (also found in examples directory)
Description:

Any INTR events that have been logged but not yet serviced are canceled.

An OFF INTR statement without the optional interface select code disables event-initiated
branches on all devices. If the interface select code is specified, only that interface interrupt will
be disabled.

See Also:
ENABLE, ENABLE INTR, DISABLE, DISABLE INTR, ON-EVENT, SYSTEM PRIORITY

OFF KBD

Cancels event branches defined by ON KBD.
Syntax: OFF KBD

Sample: IF Finish THEN OFF KBD
View Sample:    OFF KBD.BAS    (also found in examples directory)
Description:

Any KBD events that have been logged but not yet serviced are canceled and the keyboard
buffer is cleared.

Execution of an OFF KBD statement within a subprogram will disable the ON KBD definition
within the context of the subprogram, but when control is returned to the calling program the
ON KBD definition is re-enabled. The keyboard buffer remains cleared.

See Also:
ENABLE, DISABLE, KBD$, ON KBD, SYSTEM PRIORITY

OFF KEY

Cancels event branches defined by ON KEY.
Syntax: OFF KEY [key-number]

where: key-number = numeric-expression rounded to an integer

Sample: OFF KEY
OFF KEY 2
OFF KEY Lock
IF Carkey AND NOT Housekey THEN OFF KEY
View Sample:    OFF KEY.BAS    (also found in examples directory)
Description:

An OFF KEY statement without the key-number cancels event branches for all softkeys. If the
key-number is specified then only that softkey will be canceled. The key-number range is zero
through twenty-three. Any KEY events for affected softkeys that have been logged but not yet
serviced are canceled. OFF KEY also restores the previous key labels.

Executing OFF KEY within a subprogram disables the ON KEY definitions within the subprogram
context. When control is returned to the calling program the ON KEY definitions are re-enabled.

See Also:
ENABLE, DISABLE, ON KEY, SYSTEM PRIORITY

OFF KNOB

Cancels event branches defined by ON KNOB.
Syntax: OFF KNOB

Sample: IF Scroll THEN OFF KNOB
View Sample:    OFF KNOB.BAS    (also found in examples directory)
Description:

Any KNOB events that have been logged but not yet serviced are canceled. After OFF KNOB,
the knob or mouse will scroll the screen and move the cursor.

See Also:
ENABLE, DISABLE, KNOBX, KNOBY, ON KNOB, SYSTEM PRIORITY

OFF SIGNAL

Cancels event branches defined by ON SIGNAL.
Syntax: OFF SIGNAL [signal-number]

where: signal-number = numeric-expression rounded to an integer

Sample: OFF SIGNAL
OFF SIGNAL 5
OFF SIGNAL Msg
View Sample:    OFF SIGNAL.BAS    (also found in examples directory)
Description:

An OFF SIGNAL statement without the signal number will cancel all the ON SIGNAL definitions.
If the signal number is specified then only that signal will be canceled. The signal-number has a
range of zero through fifteen. Any SIGNAL events with the same signal number that have been
logged but not yet serviced are canceled. OFF SIGNAL applies to the current context only.

See Also:
ENABLE, DISABLE, ON SIGNAL, SIGNAL, SYSTEM PRIORITY

OFF TIME

Cancels event branches defined by ON TIME.
Syntax: OFF TIME

Sample: IF Clock THEN OFF TIME
View Sample:    OFF TIME.BAS    (also found in examples directory)
Description:

Any TIME events that have been logged but not yet serviced are canceled.

Execution of an OFF TIME statement within a subprogram will cancel the ON TIME definition
within the context of the subprogram, but when control is returned to the calling program the
ON TIME definition is re-enabled.

See Also:
ENABLE, DISABLE, ON TIME, SYSTEM PRIORITY

OFF TIMEOUT

Cancels event branches defined by ON TIMEOUT.
Syntax: OFF TIMEOUT [interface-select-code]

where: interface-select-code = integer numeric-expression

Sample: OFF TIMEOUT
OFF TIMEOUT 8
OFF TIMEOUT Gpib
View Sample:    OFF TIMEOUT.BAS    (also found in examples directory)
Description:

No more timeouts can occur on the affected interfaces after an OFF TIMEOUT statement.

An OFF TIMEOUT statement without the interface-select-code will cancel the ON TIMEOUT
definitions on all interfaces. If the interface-select-code is specified then only that interface
TIMEOUT will be canceled.

See Also:
ENABLE, DISABLE, ON TIMEOUT, SYSTEM PRIORITY

ON

Transfers control to one of a list of lines.
Syntax: ON index {GOSUB | GOTO} line [,line...]

where: index = numeric-expression rounded to an integer
line = line-number | line-label

Sample: ON Choose GOSUB Placea,Placeb
ON X/2 GOTO 700,800,900
View Sample:    ON.BAS    (also found in examples directory)
Description:

ON ... GOTO or ON ... GOSUB allows you to perform a multi-way transfer. You can select one of
a list of program line numbers by the computed value of a numeric expression. The numeric
expression is rounded to an integer value and is used as an index to select one of the line
numbers from the list.

If the integer value is 1, the first line number is used. If the integer value is 2, the second line
number is used and so on. If the index number is less than one or greater than the number of
line numbers in the list, an error is generated.

If GOSUB is specified the matching RETURN is to the line following the ON statement.

See Also:
GOTO, GOSUB, RETURN

ON CYCLE

Defines a repeating event branch.
Syntax: ON CYCLE seconds [,priority] action

where: seconds = numeric-expression rounded to an integer.
action = { GOTO|GOSUB|RECOVER } line | CALL subprogram
line = line-number | line-label

Sample: ON CYCLE Seconds,Priority CALL Sub
ON CYCLE Max RECOVER Names
ON CYCLE 1200,3 GOTO 2000
View Sample:    ON CYCLE.BAS    (also found in examples directory)
Description:

ON CYCLE defines a repeating event branch. After the specified number of seconds has passed,
an event is generated and the cycle is started again. The value of seconds can range from 0.01
to 167772.16 but is rounded to the timing resolution of the computer. If short CYCLE values
cause events to occur faster than the computer can service them, some events will be lost.

There is only one CYCLE timer. Executing a new ON CYCLE while another ON CYCLE is still in
effect will cause the CYCLE timer to use the new seconds value. If the ON CYCLE is executed in
a different program context the original ON CYCLE definition is restored when control returns to
the calling context. The old CYCLE time is not restored, however.

ON CYCLE is canceled by OFF CYCLE and disabled by DISABLE. A SUBEXIT, SUBEND, or RETURN
from the defining subprogram also cancels it.

Common Information
The following information is common to the ON CYCLE, DELAY, EOR, EOT, INTR, KBD, KEY,
KNOB, SIGNAL, TIME statements.

The line number or line label following the GOTO, GOSUB or RECOVER or the subprogram name
following the CALL indicates where to transfer control when the event occurs. Line numbers or
labels must be in the same subprogram as the ON statement. When returning from a CALL or
GOSUB execution continues with the line that would have executed next when the event
occurred. RECOVER causes the program to SUBEXIT from subprograms as needed to return to
the defining subprogram and then does a GOTO to the specified program line. (The defining
subprogram is the subprogram with the ON statement.)

The event branch can only occur if the current SYSTEM PRIORITY is less than the priority
specified in the ON statement. The default priority is one. The highest priority that can be
specified is fifteen. ON END, ON ERROR and ON TIMEOUT events have a higher priority than all
other events. If an event branch can not take place because of system priority, the event is
logged and occurs later when the system priority drops to a level which allows it.

When an event branch is taken the system priority is changed depending on the branch type.
With a GOTO the system priority is not changed. With a RECOVER the system priority is only
changed if any SUBEXITs are performed, in which case the system priority is restored to the

value when the defining subprogram called another subprogram. With a CALL or GOSUB the
system priority is changed to the specified priority. When returning from the CALL or GOSUB the
system priority is restored to the value before the branch was taken.

If other subprograms have been called from the defining subprogram when the event occurs,
when the branch can be taken depends on the branch type. CALL or RECOVER branches can
still occur as soon as the event occurs. (Although branches are not taken in the middle of
execution of a line; the branch is taken between lines.) GOTO or GOSUB branches can not be
taken immediately. The event will be logged and then serviced when control returns to the
defining subprogram.

See Also:
ENABLE, DISABLE, OFF CYCLE, SYSTEM PRIORITY

ON DELAY

Defines an event branch after specified seconds.
Syntax: ON DELAY seconds [,priority] action

where: seconds = numeric-expression rounded to an integer.
action = { GOTO|GOSUB|RECOVER } line | CALL subprogram
line = line-number | line-label

Sample: ON DELAY Seconds,Priority CALL Sub1
ON DELAY 3 GOTO 5710
ON DELAY Maxtime,4 GOSUB Branch
View Sample:    ON DELAY.BAS    (also found in examples directory)
Description:

ON DELAY defines a one time event branch to take after a specified number of seconds. The
value of seconds can range from 0.01 to 167772.16 but is rounded to the timing resolution of
the computer.

There is only one DELAY timer. Executing a new ON DELAY while another ON DELAY is still in
effect will cause the DELAY timer to use the new seconds value. If the ON DELAY is executed in
a different program context, the original ON DELAY definition is restored when control returns to
the calling context. The old DELAY time is not restored, however.

ON DELAY is canceled by OFF DELAY and disabled by DISABLE. A SUBEXIT, SUBEND, or RETURN
from the defining subprogram also cancels it.

More information about ON DELAY can be found under the "Common Information" heading of
the ON CYCLE manual entry.

See Also:
ENABLE, DISABLE, OFF DELAY, SYSTEM PRIORITY

ON END

Defines an event branch for end-of-file conditions.
Syntax: ON END @io-path action

where: action = { GOTO|GOSUB|RECOVER } line | CALL subprogram
line = line-number | line-label

Sample: ON END @Dat GOTO 750
ON END @Code CALL Find
ON END @File RECOVER Fix
View Sample:    ON END.BAS    (also found in examples directory)
Description:

When you ENTER data and there is no more data in a file, or when a random access OUTPUT or
ENTER requires more bytes than the record size, an end-of-file error occurs which may be caught
by the ON END statement. The ON END statement must be executed before the end-of-file
error condition occurs. If an ON END event handler does not exist, error 59 occurs, which can be
trapped like other errors with an ON ERROR handler.

ON END is canceled by OFF END but is not disabled by DISABLE. A SUBEXIT, SUBEND, or
RETURN from the defining subprogram also cancels it.

When returning from a CALL or GOSUB execution continues with the line following the line
causing the end-of-file.

Common Information for ON END, ERROR, TIMEOUT
The line number or line label following the GOTO, GOSUB, or RECOVER or the subprogram
name following the CALL indicates where to transfer control when the event occurs. Line
numbers or labels must be in the same subprogram as the ON statement. RECOVER causes the
program to SUBEXIT from subprograms as needed to return to the defining subprogram and
then does a GOTO to the specified program line. (The defining subprogram is the subprogram
with the ON statement.)

The ON END and ON TIMEOUT events have a fixed priority of fifteen and ON ERROR has a fixed
priority of seventeen. However, when one of these events occurs, the current SYSTEM PRIORITY
is ignored and the branch occurs immediately. The only exception is when an error occurs when
the system priority is already seventeen; this "double fault" condition can not be trapped.

When an event branch is taken the system priority is changed depending on the branch type.
With a GOTO the system priority is not changed. With a RECOVER the system priority is only
changed if any SUBEXITs are performed, in which case the system priority is restored to the
value when the defining subprogram called another subprogram. With a CALL or GOSUB the
system priority is changed to fifteen for ON END and ON TIMEOUT or seventeen for ON ERROR.
When returning from the CALL or GOSUB the system priority is restored to the value before the
branch was taken.

If other subprograms have been called from the defining subprogram when the event occurs,
the action taken depends on the branch type. CALL or RECOVER branches can still occur as

soon as the event occurs. (Although branches are not taken in the middle of execution of a line;
the branch is taken between lines.) GOTO or GOSUB branches can not be taken so an error
occurs.

See Also:
ERRL, ERRLN, ERRM$, ERRN, ON ERROR, ON TIMEOUT, OFF END

ON EOR

Defines an event branch for end-of-record conditions.
Syntax: ON EOR @io-path [,priority] action

where: action = { GOTO|GOSUB|RECOVER } line | CALL subprogram
line = line-number | line-label

Sample: ON EOR @Dev GOTO 1200
ON EOR @Code,2 CALL Record
Description:

The TRANSFER statement can define what is to be considered a record for the purpose of that
particular TRANSFER. When an end-of-record is detected, an EOR event occurs which may be
caught by the ON EOR statement. The ON EOR statement must be executed before the end-of-
record condition occurs.

The I/O path must be the I/O path used in the TRANSFER to specify the device. Using the I/O
path assigned to the buffer will cause an error.

If another ON EOR is executed in a different program context, the original ON EOR definition is
restored when control returns to the calling context.

ON EOR is canceled by OFF EOR and is disabled by DISABLE. A SUBEXIT, SUBEND, or RETURN
from the defining subprogram also cancels it. If a context exit is delayed until a TRANSFER
terminates, any EOR events generated during the delay are discarded. Use WAIT FOR EOR to
force the event to be serviced before the subprogram exits.

More information about ON EOR can be found under the "Common Information" heading of the
ON CYCLE manual entry.

See Also:
ABORTIO, OFF EOR, ON EOT, TRANSFER, WAIT

ON EOT

Defines an event branch for end-of-transfer conditions.
Syntax: ON EOT @io-path [,priority] action

where: action = { GOTO|GOSUB|RECOVER } line | CALL subprogram
line = line-number | line-label

Sample: ON EOT @Dev GOTO 1200
ON EOT @Code,2 CALL Done
View Sample:    ON EOT.BAS    (also found in examples directory)
Description:

When a TRANSFER finishes, an end-of-transfer, EOT, event occurs which may be caught by the
ON EOT statement. The ON EOT statement must be executed before the TRANSFER ends.

The I/O path must be the I/O path used in the TRANSFER to specify the device. Using the I/O
path assigned to the buffer will cause an error.

If another ON EOT is executed in a different program context, the original ON EOT definition is
restored when control returns to the calling context.

ON EOT is canceled by OFF EOT and is disabled by DISABLE. A SUBEXIT, SUBEND, or RETURN
from the defining subprogram also cancels it. If a context exit is delayed until a TRANSFER
terminates, any EOT events generated during the delay are discarded. Use WAIT FOR EOT to
force the event to be serviced before the subprogram exits.

More information about ON EOT can be found under the "Common Information" heading of the
ON CYCLE manual entry.

See Also:
ABORTIO, OFF EOT, ON EOR, TRANSFER, WAIT

ON ERROR

Defines an event branch for trappable errors.
Syntax: ON ERROR action

where: action = { GOTO|GOSUB|RECOVER } line | CALL subprogram
line = line-number | line-label

Sample: ON ERROR GOTO 2000
ON ERROR CALL Ertrap
ON ERROR RECOVER Test
View Sample:    ON ERROR.BAS    (also found in examples directory)
Description:

The ON ERROR statement specifies an error handling routine to be called when an error occurs
during program execution. The ON ERROR statement must be executed before the error
condition occurs. The routine can evaluate the error condition by using the ERRL, ERRLN and
ERRN, functions and any other pertinent information to determine the corrective action to take.
If there is not enough memory to run the routine, the original error is reported to the user and
the program is paused.

If another ON ERROR is executed in a different context, the original ON ERROR definition is
restored when control returns to the calling context. ON ERROR is canceled by OFF ERROR but
is not disabled by DISABLE. A SUBEXIT, SUBEND or RETURN from the defining subprogram also
cancels it.

When returning from a CALL or GOSUB execution normally continues with the offending line. If
the error handling routine does not correct the cause of the error, the error will occur again,
causing an infinite loop. To avoid re-execution of the line, use ERROR SUBEXIT instead of
SUBEXIT or ERROR RETURN instead of RETURN.

If an error occurs in an error handling routine called with GOSUB or CALL, it is reported to the
user and the program is paused. If an error occurs in an error handling routine called with GOTO
or RECOVER, an infinite loop can result.

If ON ERROR is not used to handle an error, the program is paused and an error message is
displayed on the message line. Pressing CONTINUE will re-execute the offending line. Type CONT
followed by the line number of the next line to continue execution without re-executing the
offending line.

More information about ON ERROR can be found under the "Common Information" heading of
the ON END manual entry.

See Also:
CAUSE ERROR, CLEAR ERROR, ERRL, ERRLN, ERRM$, ERRN, ERROR RETURN, ERROR SUBEXIT,
ON END, ON TIMEOUT

ON INTR

Defines a hardware interrupt initiated branch.
Syntax: ON INTR interface-select-code [,priority] action

where: action = { GOTO|GOSUB|RECOVER } line | CALL subprogram
line = line-number | line-label

Sample: ON INTR 7 GOTO 1000
ON INTR Isc,Priority CALL Sub
ON INTR Gpib,4 GOSUB Repair
View Sample:    ON INTR.BAS    (also found in examples directory)

Description:
ON INTR defines an event branch to be taken when an interface card generates an interrupt.
Execution of an ON INTR statement is not sufficient to allow an interrupt to occur. As a
minimum, ENABLE INTR must be executed to establish an interrupt mask. Depending on the
interface, additional statements may have to be executed as well. Refer to the device driver
documentation for more information.

When an interrupt occurs a DISABLE INTR for the interface is automatically executed.
Consequently, an ENABLE INTR statement must be used to explicitly re-enable interrupts.

There is only one ENABLE INTR mask per interface select code. Executing a new ENABLE INTR
while another is still in effect will cause the interface or device to use the new mask value. If the
ON INTR is executed in a different program context, the original ON INTR definition is restored
when control returns to the calling context. The ENABLE INTR mask is not restored, however.

ON INTR is canceled by OFF INTR and disabled by DISABLE or DISABLE INTR. A SUBEXIT,
SUBEND or RETURN from the defining subprogram also cancels it.

More information about ON INTR can be found under the "Common Information" heading of the
ON CYCLE manual entry.

See Also:
ENABLE, ENABLE INTR, DISABLE, DISABLE INTR, OFF INTR, SYSTEM PRIORITY

ON KBD

Defines an event branch for when a key is pressed.
Syntax: ON KBD [ALL] [,priority] action

where: action = { GOTO|GOSUB|RECOVER } line | CALL subprogram
line = line-number | line-label

Sample: ON KBD GOTO 2000
ON KBD,Order GOSUB First
ON KBD ALL RECOVER 500
ON KBD ALL,3 CALL Sub
View Sample:    ON KBD.BAS    (also found in examples directory)
Description:

ON KBD defines an event branch to be taken when a key is pressed. ON KBD ALL traps all
alpha-numeric keys and HTBasic function keys except RESET. The following keys are not trapped
if ALL is not specified: CLR I/O, MENU, PAUSE, s-MENU, STOP, EXECUTE, USER and any softkeys.

If ON KBD is active, immediate execution of keyboard editing and display control function keys
is suspended. All keystrokes go into a special KBD$ buffer. The buffer is cleared when it is read.
The event handling routine can selectively execute keys found in KBD$ by including them in an
OUTPUT KBD statement:

OUTPUT KBD;Buf$;

Unless an ON KNOB definition is active, movement of the mouse generates ON KBD interrupts
and places UP, DOWN, LEFT or RIGHT keystrokes into the KBD$ buffer. If both ON KBD ALL and
ON KEY are active, ON KBD ALL takes precedence over ON KEY.

Executing a new ON KBD while another ON KBD is still in effect overrides the previous ON KBD
definition. If the ON KBD is executed in a different program context, the original ON KBD
definition is restored when control returns to the calling context.

ON KBD is canceled by OFF KBD, disabled by DISABLE and temporarily disabled by an LINPUT,
INPUT, or ENTER KBD statement. A SUBEXIT, SUBEND, or RETURN from the defining subprogram
also cancels it.

More information about ON KBD can be found under the "Common Information" heading of the
ON CYCLE manual entry.

See Also:
ENABLE, DISABLE, KBD$, OFF KBD, SYSTEM PRIORITY

ON KEY

Defines an event branch for when a softkey is pressed.
Syntax: ON KEY key-number [LABEL label] [,priority] action

where: key-number = numeric-expression rounded to an integer.
label = string-expression
action = { GOTO|GOSUB|RECOVER } line | CALL subprogram
line = line-number | line-label

Sample: ON KEY 1 GOTO 200
ON KEY 5 LABEL Find$ RECOVER 500
ON KEY 2 LABEL "Print",3 CALL Findings
View Sample:    ON KEY.BAS    (also found in examples directory)
Description:

ON KEY defines a softkey event branch and optionally a label to be displayed in the softkey
menu. When the softkey is pressed, the event occurs. The key number must be in the range of
zero through twenty-three. Only as many characters as will fit in the menu area softkey label are
displayed from the label.

If the label begins with a CLR LN key (CHR$(255) & "#"), only the characters after the CLR LN
will be displayed. If the label begins with a CONTINUE key, the two characters (CHR$(255) & "C")
will be replaced with the string "CONTINUE". If the label begins with a RUN key, the two
characters (CHR$(255) & "R") will be replaced with the string "RUN".

Executing a new ON KEY while another ON KEY for the same softkey is still in effect will
override the previous LABEL and definition. If the ON KEY is executed in a different program
context, the original ON KEY definition is restored when control returns to the calling context.

ON KEY is canceled by OFF KEY, disabled by DISABLE and temporarily disabled by an LINPUT,
INPUT, or ENTERKBD statement. A SUBEXIT, SUBEND, or RETURN from the defining subprogram
also cancels it.

More information about ON KEY can be found under the "Common Information" heading of the
ON CYCLE manual entry.

See Also:
ENABLE, DISABLE, OFF KEY, SET KEY, SYSTEM PRIORITY

ON KNOB

Defines an event branch for when the KNOB is turned.
Syntax: ON KNOB seconds [,priority] action

where: action = { GOTO|GOSUB|RECOVER } line | CALL subprogram
line = line-number | line-label

Sample: ON KNOB 1 GOTO 500
ON KNOB Seconds,Priority Call Sub
ON KNOB 1/2,4 GOSUB Label
View Sample:    ON KNOB.BAS    (also found in examples directory)
Description:

ON KNOB specifies the time interval in seconds for which movement of the KNOB is sampled.
Nothing happens, however, until the first time the KNOB is moved after the ON KNOB
statement has been executed. Once initial movement of the KNOB is detected, a timer begins
for the specified interval. When the interval has expired, KNOBX and KNOBY are set to the
distance the KNOB moved during the interval. A KNOB event is then generated. The value of
seconds can range from 0.01 to 2.55 but is rounded to the timing resolution of the computer.

The KNOBX and KNOBY functions are read to determine the number of increments the KNOB
has been moved in the x and the y directions during the interval.

Executing a new ON KNOB while another ON KNOB is still in effect overrides the previous ON
KNOBdefinition. If the ON KNOB is executed in a different program context, the original ON
KNOB definition is restored when control returns to the calling context.

ON KNOB is canceled by OFF KNOB and disabled by DISABLE. A SUBEXIT, SUBEND, or RETURN
from the defining subprogram also cancels it.

While the syntax of this statement specifies a knob, typically a mouse is used instead; the
syntax is for compatibility with older versions of HP BASIC.

More information about ON KNOB can be found under the "Common Information" heading of
the ON CYCLE manual entry.

See Also:
ENABLE, DISABLE, OFF KNOB, KNOBX, KNOBY, SYSTEM PRIORITY

ON SIGNAL

Defines an event branch for SIGNAL statement.
Syntax: ON SIGNAL signal-number [,priority] action

where: action = { GOTO|GOSUB|RECOVER } line | CALL subprogram
line = line-number | line-label

Sample: ON SIGNAL Selector,Priority CALL Sub2
ON SIGNAL RECOVER Trap
ON SIGNAL 8 GOTO 770
View Sample:    ON SIGNAL.BAS    (also found in examples directory)
Description:

ON SIGNAL enables an event branch which occurs when a SIGNAL statement is executed using
the same signal-number. The signal-number is a numeric expression rounded to an integer with
a range of zero through fifteen.

Executing ON SIGNAL while another ON SIGNAL is still in effect for that same signal number
overrides the previous ON SIGNAL definition. If the ON SIGNAL is executed in a different
program context the original ON SIGNAL definition is restored when control returns to the
calling context.

ON SIGNAL is canceled by OFF SIGNAL and disabled by DISABLE. A SUBEXIT, SUBEND, or
RETURN from the defining subprogram also cancels it.

More information about ON SIGNAL can be found under the "Common Information" heading of
the ON CYCLE manual entry.

See Also:
ENABLE, DISABLE, OFF SIGNAL, SIGNAL, SYSTEM PRIORITY

ON TIME

Defines a single event branch for a specific time.
Syntax: ON TIME time [,priority] action

where: time = numeric expression in range 0 to 86,399.99.
action = { GOTO|GOSUB|RECOVER } line | CALL subprogram
line = line-number | line-label

Sample: ON TIME Hour*3600,T_pri CALL Explode
ON TIME (TIMEDATE+3600) MOD 86400 GOTO 2000
View Sample:    ON TIME.BAS    (also found in examples directory)
Description:

ON TIME defines an event branch to occur when the real-time-clock reaches a specified time.
The time is specified as the number of seconds since midnight. The time specified is rounded to
the resolution of the computer clock.

There is only one TIME timer. Executing a new ON TIME while another ON TIME is still in effect
will cause the TIME timer to use the new value. If the ON TIME is executed in a different
program context, the original ON TIME definition is restored when control returns to the calling
context. The old TIME value is not restored, however.

ON TIME is canceled by OFF TIME and disabled by DISABLE. A SUBEXIT, SUBEND, or RETURN
from the defining subprogram also cancels it.

More information about ON TIME can be found under the "Common Information" heading of the
ON CYCLE manual entry.

See Also:
ENABLE, DISABLE, OFF TIME, SYSTEM PRIORITY, TIME$, TIMEDATE

ON TIMEOUT
Defines an event branch for an I/O timeout.

Syntax: ON TIMEOUT interface-select-code, seconds action

where: action = { GOTO | GOSUB | RECOVER } line | CALL subprogram
LINE = line-number | line-label

Sample: ON TIMEOUT 4,5 GOTO 2000
ON TIMEOUT Printer,Sec GOSUB Message
ON TIMEOUT 4,1/2 RECOVER Line
View Sample:    ON TIMEOUT.BAS    (also found in examples directory)
Description:

ON TIMEOUT defines an event branch to take when an I/O operation on the specified interface
fails to responded within the specified number of seconds. The value of seconds can range from
0.001 to 32.767 but is rounded to the timing resolution of the computer. The ON TIMEOUT
statement must be executed before the I/O statement. If an ON TIMEOUT is not specified for a
particular interface and a device does not respond to an I/O action, the computer will wait
forever. Pressing the CLR I/O key will abort such an infinite wait.

TIMEOUTs work with the ENTER, OUTPUT, PRINTALL IS, PRINTER IS and PLOTTER IS statements,
but not with the CONTROL, STATUS, READIO or WRITEIO statements or with the CRT or KBD
interfaces or with files.

ON TIMEOUT is canceled by OFF TIMEOUT but is not disabled by DISABLE. A SUBEXIT, SUBEND,
or RETURN from the defining subprogram also cancels it.

When returning from a CALL or GOSUB,execution continues with the line following the line
causing the timeout.

More information about ON TIMEOUT can be found under the "Common Information" heading
of the ON END manual entry.

See Also:
OFF TIMEOUT, ON END, ON ERROR

OPTION BASE

Sets the default lower bound of array subscripts.
Syntax: OPTION BASE {0 | 1}

Sample: OPTION BASE 0
OPTION BASE 1
View Sample:    OPTION BASE.BAS    (also found in examples directory)
Description:

The default array subscript lower bound may be specified in each program context with the
OPTION BASEstatement. It must appear in the program context before any COM, COMPLEX,
DIM, INTEGER or REAL statements. There may be only one OPTION BASE statement in any
program context. If there is no OPTION BASE statement then the default lower bound is zero.

See Also:
BASE, COM, DIM, INTEGER, REAL

OR

Returns the logical inclusive OR of two expressions.
Syntax: numeric-expression OR numeric-expression

Sample: A=1 OR 0
IF ProcA OR ProcB THEN Next
IF A=B OR X>Y THEN 1000
X=N+4*(J=1 OR K=2)
View Sample:    OR.BAS    (also found in examples directory)
Description:

The result of A OR B is zero only if both A and B are zero. If either or both A and B are non-zero,
the result is one.

See Also:
AND, NOT, EXOR

OUT and OUTW

Outputs a byte or word to an I/O Port.
Syntax: OUT port-address, byte-value

OUTW port-address, word-value

where: port-address = numeric-expression rounded to an integer
byte-value = numeric-expression rounded to an integer in
the range 0 to 255
word-value = numeric-expression rounded to an integer

Sample: OUT &H300,64+16
OUTW Base+3,&HF001
View Sample:    OUT.BAS    (also found in examples directory)
View Sample:    OUTW.BAS    (also found in examples directory)
Description:

The OUT statement outputs a byte to the specified I/O port. It is equivalent to WRITEIO
8080,Port;Byte. The OUTW statement outputs a word to the specified I/O port. It is equivalent to
WRITEIO -8080,Port;Word. These statements are useful for doing I/O with devices, data
acquisition boards, etc. for which there is no device driver available.

Some operating systems, such as Windows NT protect I/O ports; applications are not allowed to
read or write to them. Under such operating systems, these functions are not allowed.

Porting to HP BASIC:
OUT and OUTW are new HTBasic statements that are not available in HP BASIC. They should
not be used in programs that must be ported back to HP BASIC.

See Also:
INP and INPW, READIO, WRITEIO

OUTPUT

Outputs items to a specified destination.
Syntax: OUTPUT dest [USING image] [; items [{,|;}] [END]]

where: dest = @io-path [,record-number] |
device-selector |
string-name$ [(subscripts)]
items = item [{,|;} item [{,|;} item...]]
item = numeric-expression | numeric-array(*) |
string-expression | string-array$(*)
image = line-number | line label | string-expression
See IMAGE for image syntax.
subscripts = subscript [,subscript...]

Sample: OUTPUT @Test;Sarray(*)
OUTPUT @Sequence,4 USING SpecA;Part(3)
OUTPUT 10 USING "6A";V$[2;6]
OUTPUT @Printer;Order;SSN;Work$,END
View Sample:    OUTPUT.BAS    (also found in examples directory)

Description:
Numeric data, array elements or character strings are output to the specified destination.

Unless USING    is specified, numeric items are output in standard numeric format. If the absolute
value is in the range 1E-4 to 1E+6, it is rounded to twelve digits and output in floating point

form. Otherwise the number is output in scientific notation.

Full arrays are output in row major order, using the full array specifier, "(*)". Each element is an
item and is separated by a comma or semicolon if one follows the array name.

Destinations
File.    An ASCII, BDAT or ordinary file may be used as the destination. The file must have been
ASSIGNed to an I/O path. The ASSIGN statement determines the attributes to be used. With
FORMAT ON, BDAT and ordinary files are written as ASCII characters. With FORMAT OFF, BDAT
and ordinary files are written in internal format (explained below). An ASCII file is always written
as ASCII characters. All files may be accessed serially and additionally, BDAT and ordinary files
may be accessed randomly by including a record number.

String.    A string may be used as the destination. OUTPUT begins at the beginning of the string
and writes it serially.

Device.    A device-selector or I/O path may be used to OUTPUT items to a device. The default
system attributes are used with a device-selector. The ASSIGN statement determines the
attributes used with an I/O path.

If the device selector is one, then the destination is the CRT. If the device selector is two, then
the destination is the keyboard. This can be used to enter the keyboard function key sequences
into the keyboard buffer. Each function sequence is two bytes, a CHR$(255) followed by the
function specifier.

Buffer.    A buffer assigned to an I/O path may be used as the destination. The buffer fill pointer
points to the buffer location to be written next and is updated as data is OUTPUT. If the empty
pointer is encountered, an error is generated.

FORMAT
If the FORMAT ON attribute is specified in the ASSIGN statement, the output is sent in ASCII
format and the punctuation following each item affects the output. A semicolon causes an item
to be sent with nothing following it, a comma causes a string item to be sent with a CR/LF
following it and a numeric item to be sent with a comma following it. If no punctuation follows
the last OUTPUT item, the EOL sequence follows it and if punctuation follows the last OUTPUT
item, the EOL sequence is not output.

A complex number is output in rectangular form, real part first, then a comma and finally, the
imaginary part. If a semicolon follows the complex item then the comma is not output.

If the FORMAT OFF attribute is specified in the ASSIGN statement the output is sent in internal
format (explained below) and the punctuation following each item has no effect on the output.

END
The optional END may be used after the last data item. If USING is not specified, then END: 1)
suppresses the EOL sequence from being output after the last item, 2) sends an EOI signal with
the last character of the last item sent to a IEEE-488 device, and 3) truncates a file.

If USING is specified, then END: 1) suppresses the EOL sequence only when no data is output
from the last output item, 2) sends EOI with the last character of the last item (unless no data is
sent from the last item) and 3) truncates a file. A comma before END will output an item
terminator (a comma for numeric items or a CR/LF for string items).

USING
See IMAGE for a complete explanation of the image list. The items specified in the image list are
acted upon as they are encountered. Each image list item should have a matching output item.
Processing of the image list stops when no matching output item is found. Conversely, the
image list is reused starting at the beginning to provide matches for all remaining output items.
FORMAT ON is used in connection with OUTPUT USING, even if FORMAT OFF has been
specified.

OUTPUT USING is not allowed to ASCII files. Use BDAT or ordinary files or if necessary, do the

OUTPUT USING to a string and then OUTPUT the string to the ASCII file.

Internal Format (FORMAT OFF)
The internal format for an INTEGER is a two byte, two's complement, binary integer. LSB/MSB
FIRST (see ASSIGN) can be used to specify the order in which the two bytes are sent or received.
Internally, the order is stored in the form most natural to the computer's processor.

The internal format for REAL numbers is an eight byte, IEEE compatible floating point number
(see IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std. 754-1985). As with
integers, LSB/MSB FIRST can be used to determine the byte ordering during I/O statements.

A COMPLEX number is stored internally as two real numbers.

The internal format for strings depends on the source/destination of the I/O statement. The
string format for devices and BDAT files consists of a string length followed by the string
contents. Specifically, a four byte integer is sent/received first. The integer specifies the length
of the string. The actual string is then sent/received. An even number of bytes is always
sent/received, therefore, if the string is odd in length an extra padding byte is sent/received. As
with integers, LSB/MSB FIRST    can be used to determine the byte ordering of the integer length.

For ordinary files, the internal format for strings is a null-terminated string. For ASCII files
FORMAT ON/OFF has no affect. Data is always stored as ASCII strings proceeded by a two byte
length and padded by a space if necessary to make the string length even. The string length is
always stored with MSB FIRST.

Records
When outputing to a file, you may specify a record number. The first record in the file is record 1.
The record size for BDAT files is specified when the file is created and defaults to 256 bytes. For
other file types the record size is 1; thus the record number is actually the offset into the file.
The first byte of the file is at offset 1. When a record number is specified and the record size is
not 1, if the OUTPUT produces more data than a single record, an End of Record error or event
occurs.

OUTPUT KBD Porting
Three editor functions have been added to HTBasic and should not be used in programs that will
be executed with HP BASIC: DEL LEFT, NEXT WORD and PREV WORD. Otherwise, all the two-
character function key sequences (CHR$(255)&CHR$(X)) used by HP BASIC are compatible with
HTBasic. If multiple statements are output in a single OUTPUT KBD statement, they are all
executed before the next BASIC line. HP BASIC sometimes intermixes the execution with
multiple BASIC lines, based on the presence or absence of "closure keys."

See Also:
ASSIGN, ENTER, IMAGE, INPUT, PRINT

PASS CONTROL

Passes Active Controller capability.
Syntax: PASS CONTROL {@io-path | device-selector}

Sample: PASS CONTROL 719
PASS CONTROL @Dev
View Sample:    PASS CONTROL.BAS    (also found in examples directory)
Description:

If an IO-path is specified, it must be assigned to a IEEE-488 device. If the computer is the active
controller and a primary address is specified, control is passed to the addressed device. An error
is generated if the computer is not the active controller or only an interface select code is
specified. The specified device is talk addressed, a Take-Control-Message (TCT) is sent and the
Attention line is set false. The computer then becomes a bus device, as opposed to a bus
controller.

See Also:
ABORT , CLEAR, LOCAL, PPOLL, REMOTE, REQUEST, SEND, SPOLL, TRIGGER

PAUSE

Pauses program execution.
Syntax: PAUSE

Sample: PAUSE
View Sample:    PAUSE.BAS    (also found in examples directory)
Description:

PAUSE stops program execution before the next program line. The values of the variables in the
current program context may be examined and modified. The CONTINUE key or the CONT
command will resume program execution. RUN must be used to restart program execution if a
program is modified during PAUSE.

See Also:
CONT, TRACE

PDIR

Sets the rotation angle for IPLOT, RPLOT, POLYGON and RECTANGLE.
Syntax: PDIR angle

Sample: PDIR 45
IF Ready THEN PDIR Graphangle
View Sample:    PDIR.BAS     (also found in examples directory)
Description:

The angle is a numeric-expression that specifies the direction and amount of rotation. It is
measured in a counter-clockwise direction from the positive X-axis. Rotation is about the local
point of origin. The current trigonometric mode (RAD or DEG) determines the units for angle. The
default mode is RAD.

See Also:
DEG, IPLOT, LDIR, PIVOT, POLYGON, RAD, RECTANGLE, RPLOT

PEN

Sets the line color or physical pen.
Syntax: PEN pen-number

Sample: PEN 3
PEN -1
PEN Feltpen

View Sample:    PEN.BAS    (also found in examples directory)

Description:
The PEN statement sets the color which will be used for line drawing. The pen can also be
changed with PLOT, IPLOT, RPLOT and SYMBOL arguments. See COLOR for a complete
explanation of pen-numbers for the CRT.

For a plotter, the PEN statement selects one of the available pens. The PEN number is sent to
the plotter without any range checking. You should specify only values that are legal on your
plotter. Note that for HPGL plotters, a pen number of zero instructs the plotter to put away the
pen.

Drawing Mode Table
The writing mode of the pen is specified by the current drawing mode and the sign of the pen
number. GESCAPECRT,4 is used to change to normal drawing mode. GESCAPE CRT,5 is used to
change to alternate drawing mode. The following table defines the different writing modes
available. P is a positive pen number, X is the present value of a pixel.

GESCAPE CRT,4 GESCAPE CRT,5
Statement Normal Alternate                 
PEN P P BINIOR(X,P)
PEN 0 BINCMP(X)* 0
PEN -P BINAND(X,BINCMP(P)) BINEOR(X,P)

*PEN 0 in Normal Drawing Mode will do BINCMP(X) in non-color map mode and 0 in COLOR MAP
mode.

See Also:
AREA PEN, COLOR, SET PEN

PENUP

Raises the PEN on the current plotting device.
Syntax: PENUP

Sample: PENUP
View Sample:    PENUP.BAS    (also found in examples directory)
Description:

Raises the PEN on the current plotting device.

See Also:
CLIP, SHOW, VIEWPORT, WINDOW

PERMIT

Changes file protection permissions.
Syntax: PERMIT specifier [; protection [; protection...]]

where: specifier = file-specifier | path-specifier
protection = category : [permission [,permission...]]
category = OWNER | GROUP | OTHER
permission = READ | WRITE | SEARCH

Sample: PERMIT "/home/anita";OWNER : READ,WRITE,SEARCH
PERMIT "/dir/file";GROUP : READ;OTHER : READ;OWNER : READ
PERMIT "file2";OTHER :;GROUP :

Description:
On operating systems which support file permissions, PERMIT changes the permissions
assigned to a file. If the operating system does not support this feature or does not support
some of the categories or codes you specify or if you do not have the proper privilege to change
the permissions, an error is returned.

This statement is not supported by HTBasic. Use PROTECT instead.

See Also:
CAT, CHOWN, CHGRP, CREATE, PROTECT, TIMEZONE IS

PI

Returns the value 3.14159265358979.
Syntax: PI

Sample: Theta=PI
Area=PI*Radius^2
View Sample:    PI.BAS    (also found in examples directory)
Description:

The function PI returns an approximation of the value of the mathematical constant Pi, which is
the ratio of the circumference of a circle to its diameter.

See Also:
ACS, ASN, ATN, COS, DEG, RAD, SIN, TAN

PIVOT

Rotates the coordinates of all drawn lines.
Syntax: PIVOT angle

Sample: PIVOT 90
IF Adjust THEN PIVOT Lines
View Sample:    PIVOT.BAS    (also found in examples directory)
Description:

Angle is a numeric-expression that specifies the amount of rotation for all subsequently drawn
lines. The rotation is done about the logical pen position when the PIVOT statement is executed.
Positive values rotate counter-clockwise. Non-zero values of PIVOT cause the physical and
logical pen positions to be different. Logical pen movement is unaffected. LABELs and AXES
statements are unaffected.

The current trigonometric mode (RAD or DEG) determines the units for angle. The default mode
is RAD.

See Also:
DEG, IPLOT, LDIR, PDIR, PLOT, POLYGON, POLYLINE, RAD, RECTANGLE, RPLOT

PLOT

Moves the pen to the specified X and Y coordinates.
Syntax: PLOT x-position, y-position [,pen-control]

PLOT numeric-array(*) [,FILL] [,EDGE]

Sample: PLOT 25,50
PLOT Xx,Yy,Pen
PLOT Array(*)
PLOT Picto(*),FILL,EDGE
View Sample:    PLOT.BAS    (also found in examples directory)
Description:

The PLOT statement moves the pen to the specified X and Y position. You may specify when the
pen is to be raised or lowered with the optional pen-control value. A two or three column array
may be used to supply the coordinate and pen-control values.

If you specify a destination which is outside the clipping area, the logical position is set to that
point but the pen is not moved. Only the portion of the vector which lies inside the clipping area
is plotted.

The PIVOT statement affects the PLOT statement.

Pen-control
The optional pen-control value controls whether the pen is moved up or down and whether the
change occurs before or after the move:

Pen-control Value Affect                               
zero and positive even raise after move
positive odd lowered after move
negative odd lowered before move
negative even raised before move

The default pen-control value, one, specifies the pen is lowered after a move.

Array
PLOT uses a two-dimensional two- or three-column array to plot polygons. The array specifies
the polygon shape using column one for X coordinates and column two for Y coordinates. The
optional third-column specifies the operation (pen-control, AREA PEN, AREA INTENSITY, LINE
TYPE, PEN, FILL and EDGE) for each row of the array. If a two-column array is specified, the
default operation on each row is one, pen down after move.

The table below shows the meaning of columns 1 and 2 for each of the operations specified in
column 3. These operations apply to PLOT, IPLOT, RPLOT and SYMBOL.

Column 1 Column 2 Column 3 Column 3 Meaning
X value Y value < -2 use even/odd pen control
X Y -2 Pen up before moving
X Y -1 Pen down before moving
X Y 0 Pen up after moving
X Y 1 Pen down after moving
X Y 2 Pen up after moving
pen number --- 3 PEN
line type repeat value 4 LINE TYPE
color --- 5 AREA INTENSITY
--- --- 6 Start polygon mode w/FILL
--- --- 7 End polygon mode
--- --- 8 End of data for array
--- --- 9 No operation, values ignored
--- --- 10 Start polygon w/EDGE
--- --- 11 Start polygon w/FILL & EDGE
--- --- 12 Draw a FRAME
pen number --- 13 AREA PEN
red value green value 14 AREA INTENSITY
blue value --- 15 AREA INTENSITY
--- --- > 15 No operation, values ignored

Select AREA R/G/B color
Operation 5 in column 3 selects the AREA INTENSITY color (see COLOR for an explanation of
AREA INTENSITY colors). The column one value is divided into red, green and blue numbers,
each five bits in length (the sixteenth bit of column one is ignored). Each five-bit number
specifies a value in the range zero to sixteen. This number is subtracted from sixteen to
calculate the intensity value for each of the colors: red, green, blue. Intensities range in value
from zero (darkest) to sixteen (most intense).

For example, if column 1 is set to zero, then each of the three groups in column 1 is set to zero.
Sixteen minus zero yields sixteen for all three groups. Sixteen is full intensity, therefore, the
area fill color will be white.

The following equation calculates the value for column one given R, G, B values in the range
zero to one.

Column1 = 16-16*R + SHIFT(16-16*G,-5) + SHIFT(16-16*B,-10)

Operations 14 and 15 can also be used to select the AREA INTENSITY red, green and blue
values. The range of intensity is zero (no color) to 32,767 (full intensity). Operation 14 should be
done before 15 and the operation takes effect when operation 15 is done.

FILL and EDGE
A polygon is formed from a line sequence of 2 or more points with the optional FILL or EDGE
specifiers. A polygon is drawn by plotting the first point, each successive point and closed by
drawing the final point back to the first point.

If FILL is specified, the polygon is filled with the current AREA fill color and if EDGE is specified,
the polygon is edged with the current PEN color. The array pen-control instructions supersede
any other instructions on pen movement, LINE TYPE , FILL, and EDGE specifiers.

See Also:
AREA, CLIP, DRAW, IPLOT, MOVE, POLYLINE, POLYGON, RPLOT

PLOTTER IS

Specifies the graphics output device and language.
Syntax: PLOTTER IS destination, language [,hard-clip]

[; { APPEND|COLOR MAP }]

where: destination = file-specifier | device-selector
language = string expression which resolves to the name
of a graphics driver and can include driver options
hard-clip = xmin,xmax,ymin,ymax - four numeric-expressions specifying
the size of the drawing surface

Sample: PLOTTER IS CRT,"INTERNAL";COLOR MAP
PLOTTER IS 10,"HPGL",2,268,0,190
PLOTTER IS 26,"PS",2,268,0,190
PLOTTER IS "Pictfile","HPGL",5.75,250.50,7.25,136.875
PLOTTER IS CRT,"INTERNAL"

View Sample:    PLOTTER IS.BAS    (also found in examples directory)

Description:
The PLOTTER IS statement directs vector graphics to a device or file. (Use the DUMP DEVICE IS
statement to print bit-mapped graphics from the screen to a device or file.) The default
PLOTTER IS device is the CRT. Executing a PLOTTER IS statement directs all subsequent
graphics output to the specified target.

The destination of the PLOTTER IS statement tells the graphic driver where to send output.
Output can go to the display, device or file, although not every driver can send output to all the
targets. For example, display drivers can only send output to the display and it doesn't make
sense to send GIF output to anything but a file.

Display
To direct output to the CRT, use the reserved word CRT as the destination or the interface select
codes 1, 3 or 6. For most display drivers, the value affects how the driver handles text as

explained below.

Devices
To specify a device such as a plotter or a printer capable of vector graphics, use the interface
select code of the interface connecting the device. Use the device-selector if the device is on the
IEEE-488 bus. If hard-clip limits are specified, they are given in the order "xmin, xmax, ymin,
ymax" and are specified in millimeters. If the hard-clip limits are not specified, they are read
from the device when this statement is executed. The specified device must respond to this
query or the computer will wait indefinitely for the response. Use the CLR-I/O key to stop the
computer if it gets stuck in this state.

The following example sends HPGL commands to a LaserJet III printer. The first line resets the
printer, starts landscape printing and switches into HPGL mode. The second line directs plotter
output to LPT1 and sets the hard-clip units for an 8-1/2 x 11 sheet of paper:

OUTPUT 26;CHR$(27)&"E"&CHR$(27)&"&l1O"&CHR$(27)&"%1B";
PLOTTER IS 26,"HPGL",2,268,0,190

Files
To send graphics output to a file, the target should be replaced with the file name. The file must
be an existing ordinary or BDAT file. The hard-clip limits may be specified or defaulted to
±392.75 mm in the x axis and ±251.5 mm in the y axis. The hard-clip limits are "xmin, xmax,
ymin, ymax" and are specified in millimeters. If APPEND is not specified, the file is positioned to
the beginning and truncated. The file is closed when another PLOTTER IS, GINIT or SCRATCH A
statement is executed. Example:

CREATE "DRAW.PLT",0
PLOTTER IS "DRAW.PLT","HPGL"

Language
HTBasic supports loadable graphics drivers. The language string expression specifies the name
of a driver. The first time a driver is specified in a PLOTTER IS statement, the driver is loaded
and graphics are directed to it. When the plotting language is subsequently specified, the driver
is not loaded again, but graphics are again directed to it. The following table lists the drivers
available at the time of this manual printing. (Not all drivers are available in all versions.)

Name Type Display Adapter 
INTERNAL CRT Reuse last CRT driver specified
WIN CRT Windows Display Driver
HPGL Graphic Hewlett-Packard Graphic Language
PS Graphic PostScript printers, plotters, and files

"INTERNAL" is a special language string synonymous with the last CRT specified. The following
examples illustrate use of the PLOTTER IS statement in selecting device drivers:

PLOTTER IS CRT,"INTERNAL"
PLOTTER IS 712,"HPGL"
PLOTTER IS "file.ps";"PS"

HTBasic automatically loads the WIN display driver when it starts. It is recommended that
PLOTTER IS statements be included in your AUTOST file to load any necessary drivers. (Drivers
can also be loaded in immediate mode when the BASIC RUNLIGHT is Idle.)

Driver Options
It is sometimes necessary to specify options for the graphic drivers. Options are included by
appending a semicolon to the driver name, followed by the options. The syntax for specifying
options in the PLOTTER IS statement is:

PLOTTER IS target,"driver[;options]"

The specific driver sections contain more details on these options.

WIN Driver
The WIN driver is a CRT driver that uses the Microsoft Windows display drivers.

For compatibility with HP BASIC/UX, options for the WIN driver are specified on the command
line. Command line switches were explained in Chapter 1. These command line switches are
passed to the WIN driver:

Switch Effect
-colors Number of Colors to Use
-fn Use named font
-geometry Specify initial size of HTBasic window
-title Specify the window title

Window Resize
Resizing the HTBasic window using the mouse is supported, but has the following effects. If the
number of text columns changes, any text present is discarded. If in edit mode, the screen is
redrawn using the new size.

Any graphics present in the window are discarded. The current pen position is left undefined.
The VIEWPORT, WINDOW and hard clip limits are unchanged, although GESCAPECRT,3 returns
the new window size. Use the GINIT statement to set the VIEWPORT, WINDOW and hard clip
limits to the new window size. Or use the

PLOTTER IS CRT,"INTERNAL"

statement to activate use of the new hard clip limits without the side effects of GINIT.

HPGL Driver
The HPGL plotter driver generates HP-GL language plots from HTBasic plotting commands. The
driver supports most variations of HP-GL, including HP-GL/2 and the printer form of HP-GL/2
included in PCL-5. The HPGL2 plotter driver is loaded with a line like

PLOTTER IS device,"HPGL[;options]",[p1x,p2x,p1y,p2y]

or

PLOTTER IS "file","HPGL[;options]",[p1x,p2x,p1y,p2y]

In the above, device refers to an HTBasic device number. File refers to a file in the computer's
file system. The file must already exist when the PLOTTER IS statement is executed.

Plotting Area
The points (p1x,p1y) and (p2x,p2y) determine the lower left and the upper right corners of a
rectangular area the driver will plot to. These points are specified in mm from the lower left
corner of the paper. P2x and p2y must be larger than p1x and p1y, respectively. All of these
coordinates must be positive or zero if the PCL5 option is used (see Options, below). If the
plotting area is omitted, the driver reads the plot area from the plotter, if it is connected to a
serial or IEEE-488 port. If output is directed to a file, the driver uses the default values from the
table below.

PCL5 Option Orientation (P1x,P1y) (P2x,P2y)
No Landscape (-393, -252) (393, 252)
No Portrait (-252, -393) (252, 393)
Yes Landscape (0,0) (254, 184)
Yes Portrait (0,0) (184, 254)

Options
The options are listed after the semicolon in the driver name, within the quotes. If more than
one option is specified, the option names are separated by commas. When no options are
specified, the HPGL2 driver produces the same output as the HPGL driver. A table in the
Installing and Using manual may help in choosing from the options.    The options are as follows:

COLOR.    This option tells the driver that the device used for plotting is a color printer with
plotter functions, such as the Hewlett-Packard DeskJet 1600C. This option is ignored unless the
PCL5 option is also specified.

FILL.    This option tells the driver that the plotter being used can do area filling. Area filling
produced by the plotter is generally much faster than that produced by the driver.

GRAY.    This option causes the driver to produce grayscale plots when used with a printer. Each
color that normally would be plotted is changed to a brightness using the method explained in
the Pen Colors section, below, before plotting. Note that the brightness level is inverted unless
the INVERT option is also used. The GRAY option need not be specified; it is the default. This
option is ignored unless the PCL5 option is also used.

HPGL2.    By default, the driver produces plots for an HP-GL plotter. This option allows the driver
to produce plots for an HP-GL/2 plotter, such as the Hewlett-Packard DraftMaster. Since HP-GL/2
plotters can all do area filling, the HPGL2 option turns on the FILL option.

INVERT.    By default, the driver reverses black and white on color plots and reverses all gray
levels on grayscale plots when the plots are made on a printer. This is suitable for printers that
use dark inks on white paper, but is the opposite of the colors normally shown on the computer
screen. The INVERT option causes colors or gray levels to be represented as they are on the
computer screen. This option is ignored unless the PCL5 option is also used.

PCL5.    This option tells the driver that the plotter is a laser or electrostatic printer with built-in
plotter emulation using the PCL-5 language. This causes the driver to send escape sequences at
the beginning and end of plots to enable and disable the plotter emulation. When this option is
used, a PLOTTER IS CRT,"INTERNAL" statement should be executed at the end of plotting to
make the printer eject the page containing the plot. Since all PCL-5 devices use the HP-GL/2
plotter language, this option turns on the HPGL2 and FILL options.

PORTRAIT.    The PORTRAIT option causes the driver to produce plots in portrait orientation,
that is, with the long edge of the paper vertical. Without this option, the driver produces plots in
landscape orientation, with the long edge of the paper horizontal.

Polygons
The HPGL driver, for compatibility with HP BASIC, outputs polygon fills as separate lines.
However, the driver can be instructed to output HPGL/2 polygon fill commands. This is useful if
the plotter supports the polygon fill command or if an HPGL file is produced for import into
another program that supports polygons. To enable polygon mode, use GESCAPE code 104,
operation number 1:

10 INTEGER Param(1)
20 Param(0)=1 ! HPGL Operation Number 1 is HPGL/2 Flag
30 Param(1)=1 ! Set HPGL/2 Flag to 1=enable, 0=disable
40 GESCAPE Isc,104,Param(*)

If output is to a device, substitute the device ISC for Isc in line 40. If output is to a file, substitute
1 for Isc.

Pen Colors
When the HPGL2 driver is used with a pen plotter, the HTBasic PEN command selects the
indicated pen on the plotter. However, when the driver is used with a printer (as indicated by the
PCL5 option), the effect of the PEN command is that described in the following text.

The colors or grayscales produced by each pen depend on the states of the COLOR and INVERT
options used in loading the driver, as well as the state of the COLOR MAP option of the HTBasic
CRT driver. If the COLOR MAP option is off, the following gray levels or colors are used:

GRAY COLOR,
PEN GRAY COLOR INVERT INVERT
0 white white black black
1 black black white white
2 30% black red 70% black red
3 89% black yellow 21% black yellow
4 59% black green 41% black green
5 70% black cyan 30% black cyan
6 11% black blue 89% black blue
7 40% black violet 60% black violet
8 black black white white
9 30% black red 70% black red
10 89% black yellow 21% black yellow
11 59% black green 41% black green
12 70% black cyan 30% black cyan
13 11% black blue 89% black blue
14 40% black violet 60% black violet
15 black black white white

If the COLOR MAP option of the CRT driver is on, the plot is made using the colors in the
HTBasic color map if the COLOR option is used. If the INVERT option is not used, black and
white are reversed. If the COLOR option is not used, the colors in the HTBasic color map are
converted to shades of gray using the NTSC equation:

brightness = 11% blue + 59% green + 30% red

If the INVERT option is not used, the brightness is inverted before plotting is done. With both
pen plotters and printers, the sign of the pen is ignored; the absolute value determines the pen
used.

Drawing Mode
When the PCL5 option is specified, the HTBasic statement GESCAPECRT,5 sets alternate drawing
mode for the driver. Normally, the driver replaces anything previously at a location with what is
currently drawn. In the alternate drawing mode, the previous black or colored areas show
through the white areas of the new plot. The HTBasic statement GESCAPECRT,4 returns the
driver to normal drawing mode.

Line Thickness
If the PCL5 option is specified, line thicknesses can be set in the driver. Lines default to 0.35 mm
thick. The line thickness for all pens can be changed by the GESCAPECRT,104 statement as in
either of the examples below:

INTEGER Param(1:2) ! an array for the command
Param(1) = 10 ! line thickness code
Param(2) = thickness ! desired thickness (in 1/100 GDU's)
GESCAPE CRT,104,Param(*) ! send thickness

INTEGER Param(1:2) ! an array for the command
Param(1) = 11 ! line thickness code
Param(2) = thickness ! desired thickness (in 1/100 mm)
GESCAPE CRT,104,Param(*) ! send thickness

Line Caps and Joins
When the PCL5 option is specified, line cap and join styles can be specified. By default, the
device driver uses round caps to end lines and round joins to connect lines, which simulates the
round pens used on pen plotters. This can be changed with the following statements.

INTEGER Param(1:3) ! an array for the command
Param(1) = 12 ! line thickness code
Param(2) = cap ! desired line cap
Param(3) = join ! desired line join
GESCAPE CRT,104,Param(*) ! set cap and join

The values for cap and join can be selected from the following tables.

Cap Meaning Join Meaning
1 butt cap 1 mitered join
2 square cap 2 mitered, beveled if too long
3 triangular cap 3 triangular join
4 round cap 4 round join

5 beveled join
6 no join

Note that many low-resolution PCL-5 devices use a butt cap and no join with lines less than 0.35
mm thick, regardless of the cap and join settings.

Crosshatching
The HPGL driver can crosshatch areas meant to be filled. This is its default behavior unless the
FILL or PCL5 option is specified, in which case the default is to use solid fills.

If the FILL or PCL5 options are specified, the driver can be made to crosshatch filled areas with
the following statements:

INTEGER Param(1:2) ! an array for the command
Param(1) = 1 ! set fill type
Param(2) = state ! turn solid filling on or off
GESCAPE CRT,104,Param(*) ! send command

State is 0 to use crosshatching and any other value to use solid filling. For compatibility with
older drivers, if state is nonzero, this command turns on the FILL option if neither the FILL nor
the PCL5 option was specified when the driver was loaded.

When crosshatching is turned on, the following sets of statements can be used to control the
crosshatch parameters. If these statements are not executed, crosshatching is done with solid
horizontal lines spaced 0.01 in. (0.25 mm) apart, which is useful on most devices for producing a
solid fill.

INTEGER Param(1:2) ! an array for the command
Param(1) = 2 ! set crosshatch type
Param(2) = type
GESCAPE CRT,104,Param(*) ! send command

Type is 1 for single hatching, 2 for crosshatching.

INTEGER Param(1:2) ! an array for the command
Param(1) = 3 ! set hatch angle
Param(2) = angle ! desired angle, degrees
GESCAPE CRT,104,Param(*) ! send command

Angle is the angle in degrees (regardless of the HTBasic RAD or DEG setting) for hatching. Angle
is rounded to the nearest multiple of 45 degrees.

INTEGER Param(1:2) ! an array for the command
Param(1) = 4 ! set line spacing
Param(2) = spacing ! desired spacing (in 1/100 GDU's)
GESCAPE CRT,104,Param(*) ! send command

INTEGER Param(1:2) ! an array for the command
Param(1) = 5 ! set line spacing
Param(2) = spacing ! desired spacing (in 1/100 mm)
GESCAPE CRT,104,Param(*) ! send command

The above commands are equivalent except that in the first command, spacing is expressed in
1/100 GDU and in the second in 1/100 mm.

INTEGER Param(1:3) ! an array for the command
Param(1) = 6 ! set line type for hatching
Param(2) = type ! desired line type for crosshatching
Param(3) = size ! desired pattern repetition size
GESCAPE CRT,104,Param(*) ! send command

Type is the type of line, as listed in the LINE TYPE section of the HTBasic Online Reference
Manual. Size is the pattern repetition length in 1/100 GDU's. This would be 100 times the pattern
repetition length specified in a LINE TYPE statement.

Pages
The GCLEAR statement causes subsequent plotting to be done on a new page. If the PCL5 option
is specified, the GCLEAR statement causes the printer to eject the old plot. Also, opening a file
with

PLOTTER IS "file","HPGL";APPEND

causes the driver to append new pages of plot information to the current file if it exists already.
Note that most word processor programs and other programs that can import files will probably
superimpose the plots imported from a file containing more than one plot.

Ending Plots
If the PCL5 option is used, the HPGL2 driver will not eject a plot until a GCLEAR statement is
executed, HTBasic is ended, or when the PLOTTER IS device is set to a different device. It is
recommended that a statement like

PLOTTER IS CRT,"INTERNAL"

be placed at the end of each program section that produces a plot using the PCL5 option driver.

PostScript Driver
The PostScript graphics output driver generates PostScript-language files from HTBasic plotting
commands. These files are suitable for printing on PostScript-language printers and
photographic equipment and for importing into documents using the PostScript file format. The
PostScript graphics output driver is loaded with the following statement:

PLOTTER IS destination,"PS[;options]",[p1x,p2x,p1y,p2y]

Destination refers to a device or file. If it is a file, the file must already exist when the PLOTTER
IS statement is executed and it should be an ordinary file. Otherwise the HTBasic file header will
appear as bad data at the start of the file.

The points (p1x,p1y) and (p2x,p2y) determine the lower left and the upper right corners of a
rectangular area the driver will plot to. These points are specified in mm from the lower left
corner of the paper. All of these coordinates must be positive or zero and p2x and p2y must be
larger than p1x and p1y, respectively. If omitted, the driver uses (p1x,p1y) = (25.4 mm, 25.4
mm) and (p2x,p2y) = (262.7 mm, 190.5 mm) in landscape mode and (p2x,p2y) = (190.5 mm,
262.7 mm) in portrait mode, which produces a plot with adequate margins on US "A" or
European A4 size paper. Note that most PostScript printers cannot print to the edges of the
paper. Because of this, the points specified should include a small (about 1 cm) margin on each
side when the driver is used with a printer.

Options
The options are listed after the semicolon in the driver name, within the quotes. If more than
one option is specified, the option names are separated by commas. The options are as follows:

COLOR.    This option causes the driver to produce color plots. Note that black and white are
inverted from their values on the screen unless the INVERT option is also used. Color plots
require a PostScript level 2 output device or a PostScript level 1 device with color language
extensions.

GRAY.    This option causes the driver to produce grayscale plots. Each color that normally would
be plotted is changed to a brightness using the method explained in the Pen Colors section,
below, before plotting. Note that the brightness level is inverted unless the INVERT option is
also used. The GRAY option need not be specified; it is the default.

INVERT.    By default, the driver reverses black and white on color plots and reverses all gray
levels on grayscale plots. This is suitable for printers that use dark inks on white paper, but is
the opposite of the colors normally shown on the computer screen. The INVERT option causes
colors or gray levels to be represented as they are on the computer screen.

PORTRAIT.    The PORTRAIT option causes the driver to produce plots in portrait orientation,
that is, with the long edge of the paper vertical. Without this option, the driver produces plots in
landscape orientation, with the long edge of the paper horizontal.

Pen Colors
The colors or grayscales produced by each pen depend on the states of the COLOR and INVERT
options used in loading the driver, as well as the state of the COLOR MAP option of the HTBasic
CRT driver. If the COLOR MAP option is off, the following gray levels or colors are used:

GRAY COLOR,
PEN GRAY COLOR INVERT INVERT
0 white white black black
1 black black white white
2 30% black red 70% black red
3 89% black yellow 21% black yellow
4 59% black green 41% black green
5 70% black cyan 30% black cyan
6 11% black blue 89% black blue
7 40% black violet 60% black violet
8 black black white white
9 30% black red 70% black red
10 89% black yellow 21% black yellow
11 59% black green 41% black green
12 70% black cyan 30% black cyan
13 11% black blue 89% black blue
14 40% black violet 60% black violet
15 black black white white

If the COLOR MAP option of the CRT driver is on, the plot is made using the colors in the
HTBasic color map if the COLOR option is used. If the INVERT option is not used, black and
white are reversed. If the COLOR option is not used, the colors in the HTBasic color map are
converted to shades of gray using the HTSC equation:

brightness = 11% blue + 59% green + 30% red

If the INVERT option is not used, the brightness is inverted before plotting is done. GESCAPE
codes 4 and 5 are ignored as is the sign of the PEN. Graphics always overwrite existing graphics.

Line Thickness
Lines default to 0.35 mm thick. The line thickness can be changed by the GESCAPECRT,104
statement as in either of the examples below:

INTEGER Param(1:2) ! an array for the command
Param(1) = 10 ! line thickness code
Param(2) = thickness ! desired thickness (in 1/100 GDU's)
GESCAPE CRT,104,Param(*) ! send thickness

INTEGER Param(1:2) ! an array for the command
Param(1) = 11 ! line thickness code
Param(2) = thickness ! desired thickness (in 1/100 mm)
GESCAPE CRT,104,Param(*) ! send thickness

Line Caps and Joins

By default, the device driver uses round caps to end lines and round joins to end lines, which
simulates the round pens used on pen plotters. This can be changed with the following
statements.

INTEGER Param(1:3) ! an array for the command
Param(1) = 12 ! set line cap and join
Param(2) = cap ! desired line cap
Param(3) = join ! desired line join
GESCAPE CRT,104,Param(*) ! set cap and join

The values for cap and join can be selected from the following tables.

Cap Meaning Join Meaning
1 butt cap 1,2 mitered join, beveled if too long
2 square cap 3,4 round join
3,4 round cap 5,6 beveled join

Crosshatching
By default, the PostScript plotter driver fills areas with shades of gray or color (if the COLOR
option has been specified). The driver can be made to crosshatch filled areas with the following
statements.

INTEGER Param(1:2) ! an array for the command
Param(1) = 1 ! set fill type
Param(2) = state ! turn solid filling on or off
GESCAPE CRT,104,Param(*) ! send command

State is 0 to use crosshatching and any other value to use solid filling.

When crosshatching is turned on, the following sets of statements can be used to control the
crosshatch parameters. If these statements are not executed, crosshatching is done with solid
horizontal lines spaced 0.01 in. (0.4 mm) apart.

INTEGER Param(1:2) ! an array for the command
Param(1) = 2 ! set crosshatch type
Param(2) = type
GESCAPE CRT,104,Param(*) ! send command

Type is 1 for single hatching, 2 for crosshatching.

INTEGER Param(1:2) ! an array for the command
Param(1) = 3 ! set crosshatch angle
Param(2) = angle ! desired angle, degrees
GESCAPE CRT,104,Param(*) ! send command

Angle is the angle in degrees (regardless of the HTBasic RAD or DEG setting) for hatching. Angle
is rounded to the nearest integer.

INTEGER Param(1:2) ! an array for the command
Param(1) = 4 ! set line spacing
Param(2) = spacing ! desired spacing (in 1/100 GDU's)
GESCAPE CRT,104,Param(*) ! send command

INTEGER Param(1:2) ! an array for the command
Param(1) = 5 ! set line spacing
Param(2) = spacing ! desired spacing (in 1/100 mm)
GESCAPE CRT,104,Param(*) ! send command

The above commands are equivalent except that in the first command, spacing is expressed in
1/100 GDU and in the second in 1/100 mm.

INTEGER Param(1:3) ! an array for the command
Param(1) = 6 ! set line type for hatching
Param(2) = type ! desired line type
Param(3) = size ! desired pattern repetition size
GESCAPE CRT,104,Param(*) ! send command

Type is the type of line, as listed under the LINE TYPE topic in the HTBasic Reference Online
Manual. Size is the pattern repetition length in 1/100 GDU's. This would be 100 times the pattern
repetition length specified in a LINE TYPE command.

Pages
The GCLEAR statement causes subsequent plotting to be done on a new page. The driver inserts
a PostScript "%%Page" comment at the beginning of each page. The comments are used by
some print spooling software. Also, opening a file with

PLOTTER IS "file","PS";APPEND

causes the driver to append new pages of plot information to the current file if it exists already.
Since the driver doesn't know how many pages are already in the file, it begins its "%%Page"
comments with page 1. This may cause problems with some print spooling software.

Ending Plots
The PostScript language requires information at the end of a plot to cause the plot to be printed.
This information is output when the GCLEAR statement is executed, HTBasic is exited, or when
the PLOTTER IS device is set to a different device. It is recommended that a statement like

PLOTTER IS CRT,"INTERNAL"

be placed at the end of each program section that produces a plot using the PostScript driver.

Driver Loading
Up to ten graphic and dump drivers can be loaded at a time. It is recommended that for each
driver needed, a PLOTTER IS statement is included in your AUTOST file to load it.

Driver files can be loaded at any point. To find the driver file HTBasic takes the driver specified in
the PLOTTER IS statement and performs several operations upon it to find the correct file.
".DW6" is appended to the name. Then the following locations are searched, in the specified
order:

1. The directory containing the HTBasic executable.
2. The current directory.
3. The Windows system directory (such as \WINNT\SYSTEM32).
4. The Windows directory.
5. The directories listed in the PATH environment variable.

Porting Issues
Both HP BASIC and HTBasic do an implicit PLOTTER IS assignment for you if you attempt to use
graphic statements before an explicit PLOTTER IS. The difference is that HTBasic does the
implicit PLOTTER IS as soon as HTBasic is started and HP BASIC waits until the first graphic
statement is executed. The only known effect of the different approaches is that under HP
BASIC, a SYSTEM$("PLOTTER IS") returns "0" until the first graphic statement is executed and
HTBasic returns the correct value anytime.

HP BASIC supports only "INTERNAL" and "HPGL" graphic languages. HTBasic supports loadable
graphic device drivers so it is not limited to these two choices. HTBasic also allows clip-limits to
be specified when output is directed to a device, allowing use of plotters or printers that are
incapable of returning p-points. Do not use HTBasic extensions if you wish to execute the same
program with HP BASIC.

See Also:
COLOR, CONFIGURE DUMP, DUMP DEVICE IS, GRAPHICS INPUT IS, SET PEN

POLYGON

Draws a closed regular polygon, circle, or ellipse.
Syntax: POLYGON radius [,total-chords [,draw-chords]] [,FILL] [,EDGE]

Sample: POLYGON Radius,Totside,Drawside
POLYGON -Figure,7,FILL,EDGE
POLYGON 30,65,50
View Sample:    POLYGON.BAS    (also found in examples directory)
Description:

The POLYGON statement generates variable sided polygons or circles. The pen starts and ends
a POLYGON execution in the same position and after execution the pen is up. The radius is the
distance between the logical pen position and the polygon vertices where the first vertex is in
the positive X axis direction. A negative radius will rotate the POLYGON 180 degrees.

The total number of chords is rounded to an integer and must be in the range 3 to 32,767. If not
specified, sixty chords are drawn.

The optional number of chords to draw is rounded to an integer and must be in the range of one
to 32,767. If not specified all chords are drawn.

If the number of chords drawn are less than the specified total number of chords, the polygon
closure is affected. If the pen is up when the POLYGON statement is executed, the polygon is
closed by drawing the last vertex to the first vertex. If pen is down, the polygon is closed by
drawing the last vertex to the center of the polygon and then drawing from the center to the
first vertex.

The polygon can be filled with the current AREA color and edged with the current PEN color and
LINE TYPE. If neither are specified EDGE is assumed.

The PIVOT statement affects the POLYGON statement.

See Also:
MOVE, DRAW, PIVOT, PLOT, POLYLINE, RECTANGLE

POLYLINE

Draws an open regular polygon.
Syntax: POLYLINE radius [,total-chords [,draw chords]]

Sample: POLYLINE 65,50,45
POLYLINE Radius,Chordtot,Chord
POLYLINE -Size,5
View Sample:    POLYLINE.BAS    (also found in examples directory)
Description:

The POLYLINE statement generates variable sided polygons or circles. The pen starts and ends
a POLYLINE execution in the same position and after execution the pen is up.

The radius is the distance between the logical pen position and the polygon vertices where the
first vertex is in the positive X-axis direction. A negative radius will rotate the POLYGON 180
degrees.

The total number of chords is rounded to an integer and must be in the range 3 to 32,767. If not
specified, sixty chords are drawn.

The optional number of chords to draw is rounded to an integer and must be in the range of one
to 32,767. If not specified all chords are drawn.

If the number of chords drawn are less than the specified total number of chords, the polygon is
not closed. If the pen is up when the POLYLINE statement was executed, the first vertex is on
the perimeter. If the pen is down when the POLYLINE statement was executed, the first point
(logical pen position) is drawn to the first point on the perimeter.

The PIVOT statement affects the POLYLINE statement.

See Also:
MOVE, DRAW, PIVOT, PLOT, POLYGON, RECTANGLE

POS

Returns the position of one string within another.
Syntax: POS(search-string, match-string)

where: search-string and match-string = string-expressions

Sample: I=POS(A$,B$)
IF POS(A$,B$(5)) THEN Start
P=POS(A$,"PN")
Hyphen=POS(Txt$,"-")
ON POS(Fk$,Key$) GOSUB 1000,2000,3000

View Sample:    POS.BAS    (also found in examples directory)

Description:
The POS function returns the character position in the search-string of a match-string. A value of
zero is returned if the match-string is not found in the search-string or if the match-string has a
zero length.

If a sub-string is specified for the search-string, the position returned is the position from the
beginning of the sub-string not from the beginning of the full string.

See Also:
CHR$, LWC$, NUM, REV$, RPT$, TRIM$, UPC$, VAL, VAL$

PPOLL

Conducts an IEEE-488 Parallel Poll and returns status.
Syntax: PPOLL({@io-path | interface-select-code})

Sample: PPOLL(8)
PPOLL(@Gpib)
IF BIT (PPOLL(10),3) THEN Start
Description:

A IEEE-488 parallel poll is performed and an 8-bit status message from the IEEE-488 bus is
returned. If the computer is not the active controller an error is generated. The I/O path or
interface select code must refer to the IEEE-488 interface.

The bus action is as follows: ATN and EOI are set for ³25 microsec., one byte of data is read
from the bus, EOI is released, and ATN is restored to its previous state.

See Also:
ABORT , CLEAR, LOCAL, PASS CONTROL, REMOTE, REQUEST, SEND, SPOLL, TRIGGER

PPOLL CONFIGURE

Configures remote IEEE-488 device parallel poll response.
Syntax: PPOLL CONFIGURE {@io-path | device-selector} ; configure-byte

Sample: PPOLL CONFIGURE 701;1
PPOLL CONFIGURE 702;3
PPOLL CONFIGURE @Dev;Sense
Description:

The device specified by the I/O path or the device selector is configured for a parallel poll
response. If the computer is not the active controller an error is generated. The I/O path or
device selector must refer to one or more IEEE-488 devices.

The configure byte is a numeric-expression rounded to an integer in the range zero to fifteen.
The three least significant bits of its binary representation select the data bus line and the fourth
bit selects the logical sense of the response.

The bus action is as follows: ATN, MTA, UNL, LAG, PPC, PPE.

See Also:
ABORT , CLEAR, LOCAL, PASS CONTROL, PPOLL, REMOTE, REQUEST, SEND, SPOLL, TRIGGER

PPOLL RESPONSE

Configures local IEEE-488 device parallel poll response.
Syntax: PPOLL RESPONSE {@io-path | interface-select-code} ; service

Sample: PPOLL RESPONSE Isc;Answer
PPOLL RESPONSE @Gpib;1
Description:

This statement enables or disables this device to respond to a parallel poll request from the
IEEE-488 bus active controller. If an I/O path is specified, it must refer to the IEEE-488 interface.
A service value of zero disables the parallel poll response, whereas a value of one enables the
parallel poll response. The device must be configured for a parallel poll response with the PPOLL
CONFIGURE command. It specifies which bus data bit to respond on and the logical sense of the
response.

See Also:
ABORT , CLEAR, LOCAL, PASS CONTROL, PPOLL, REMOTE, REQUEST, SEND, SPOLL, TRIGGER

PPOLL UNCONFIGURE

Disables the parallel poll response of a specified device or devices.
Syntax: PPOLL UNCONFIGURE {@io-path | device-selector}

Sample: PPOLL UNCONFIGURE 5
PPOLL UNCONFIGURE @Dev
Description:

The device specified by the I/O path or the device selector is unconfigured for a parallel poll
response. If the computer is not the active controller an error is generated. The I/O path or
device selector must refer to one or more IEEE-488 devices.

If a primary device address is specified the bus action is: ATN, MTA, UNL, LAG, PPC, PPD;
otherwise the bus action is: ATN, PPU.

See Also:
CLEAR, LOCAL, PASS CONTROL, PPOLL, REMOTE, REQUEST, SEND, SPOLL, TRIGGER

PRINT

Outputs data to the PRINTER IS device.
Syntax: PRINT [items [{,|;}]]

PRINT USING image [;items]

where: items = item [{,|;} item [{,|;} item...]]
item = numeric-expression | numeric-array(*) |
string-expression | string-array$(*) |
TAB(crt-column) | TABXY(crt-column,crt-row)
image = line-number | line label | string-expression
See IMAGE for image syntax

Sample: PRINT "Test Number ";N;
PRINT Values(*)
PRINT String$[1,8],TAB(12),Result
PRINT TABXY(1,1),Title$,TABXY(Col,3),Par$
PRINT USING 1040;R1,R2,R3
PRINT USING Fmt;Ssn,Item$,Weight
View Sample:    PRINT.BAS    (also found in examples directory)

View Sample:    TAB.BAS    (also found in examples directory)

View Sample:    TABXY.BAS    (also found in examples directory)

Description:
PRINT sends numeric data, array elements or character strings to the PRINTER IS device. The
default PRINTER IS device is the CRT. The output may optionally be formatted with the USING
image.

Unless USING is specified, numeric items are printed in standard numeric format. If the absolute
value is in the range 1E-4 to 1E+6, it is rounded to twelve digits and printed in floating point

form. Otherwise the number is printed in scientific notation.

If USING is not specified, then the punctuation following the item determines the item's print
field width and suppresses the automatic EOL sequence. The compact field is used if a
semicolon follows the item; and the default print field is used if a comma follows the item.

In both compact and default print form, numeric numbers are printed with one leading blank for
positive numbers or the minus sign for negative numbers. In compact field form numeric items
are printed with one trailing blank and string items are printed with no leading or trailing blanks.
The default print field form prints items with trailing blanks to fill to the beginning of the next ten
character field.

A complex number is printed in rectangular form, first the real part, then an extra space and
finally the imaginary part.

Arrays
A full array may be printed in row-major order using the full array specifier, "(*)". If a semi-colon
follows an array then the array elements are printed in compact fields. If a comma follows an
array then default print fields are used. Additionally the automatic EOL sequence will be
suppressed if either a semi-colon or a comma is used.

TAB/TABXY
The TAB function positions the next print character on the print line using the following
equation: TAB column_position = ((column - 1) MOD screenwidth) + 1. The TABXY function
positions the next print character on the CRT with X (column) and Y (row) coordinates.
TABXY(1,1) specifies the upper-left of the CRT. A zero value for either argument specifies the
current value for that argument.

If the CRT is not the PRINTER IS device, TABXY is ignored. TAB and TABXY can not be used with
USING.

End-Of-Line
At the end of the list of items to PRINT, an EOL is sent to the PRINTER IS device. This can be
suppressed by using trailing punctuation. EOL is also sent when the print position reaches the
WIDTH    of the printer. WIDTH and the EOL characters can be defined with the PRINTER IS
command. The default WIDTH is the width of the screen or window, and the default EOL is
CR/LF (CHR$(13) & CHR$(10)).

Control Characters
The following control characters have a special meaning when used in PRINT statements when
the CRT is the PRINTER IS device:

Character Meaning
CHR$(7) Ring the bell.
CHR$(8) Moves print cursor back one space.
CHR$(10) Moves print cursor down one line.
CHR$(12) Prints two line-feeds, scrolls output area

buffer so next item goes to the top of the CRT.
CHR$(13) Moves print cursor to column one.

Character Meaning
CHR$(128) All enhancements off.
CHR$(129) Inverse mode on.
CHR$(130) Blinking mode on.
CHR$(131) Inverse and Blinking modes on.
CHR$(132) Underline mode on.
CHR$(133) Underline and Inverse modes on.
CHR$(134) Underline and Blinking modes on.
CHR$(135) Underline, Inverse, & Blinking modes on.

Character Meaning
CHR$(136) White
CHR$(137) Red
CHR$(138) Yellow
CHR$(139) Green
CHR$(140) Cyan
CHR$(141) Blue
CHR$(142) Magenta
CHR$(143) Black

All other characters less than CHR$(32) are ignored. To print, rather than ignore, the characters
in this range, use DISPLAY FUNCTIONS.

If some characters don't display correctly when you use the PRINT or LIST commands, it may be
caused by conflicts with the attribute control characters in the range of 128 to 143. To move the
attribute control characters from the range 128 to 143 down to the range 16 to 31, use the
following command:

CONTROL CRT,100;1

With USING
See IMAGE for a complete explanation of the image list. The items specified in the image list are
acted upon as they are encountered. Each image list item should have a matching print item.
Processing of the image list stops when no matching print item is found. Conversely, the image
list is reused starting at the beginning to provide matches for all remaining print items. FORMAT
ON is used in connection with PRINT USING, even if FORMAT OFF has been specified.

Porting to HP BASIC:
CONTROL CRT, 100 is a new HTBasic feature that is not available in HP BASIC. It should not be
used in programs that must be ported back to HP BASIC.

See Also:
ALPHA, IMAGE, INPUT, OUTPUT, READ

PRINT LABEL

Assigns a name to a data storage volume.
Syntax: PRINT LABEL volume-label [TO volume-specifier]

Sample: PRINT LABEL "Officevol" TO "A:"
PRINT LABEL Vlabel$ TO Vol$

Description:
The volume label string is written to the specified device as the new label, overriding any
previous volume label. This command is not supported by HTBasic. Use the OS LABEL command
instead. The following example labels the floppy disk in drive A:

EXECUTE "LABEL A: WORKDISK"

See Also:
CAT, COPY, CREATE, INITIALIZE, MASS STORAGE IS, PROTECT, PURGE, READ LABEL, RENAME,
SYSTEM$("MSI")

PRINT PEN

Selects the pen color used for the output area and DISP line.
Syntax: PRINT PEN pen-number

Sample: PRINT PEN Value
PRINT PEN 1
IF Green THEN PRINT PEN 2
View Sample:    PRINT PEN.BAS    (also found in examples directory)
Description:

This statement overrides any ALPHA PEN statement that may be in effect. The pen-number is a
numeric expression rounded to an integer. If you are using CRTB, the bit-mapped display driver
mode, legal values are from 0 to 15. (HP BASIC supports values to 255.) If you are using CRTA,
the non-bit-mapped display driver mode, legal values are from 136 to 143. This statement is
equivalent to CONTROL CRT,15;pen-number.

See Also:
COLOR, ALPHA PEN, KBD LINE PEN, KEY LABELS PEN

PRINTALL IS
Assigns a logging device for operator interaction and error messages.

Syntax: PRINTALL IS destination [;attributes]

where: destination = device-selector | file-specifier
attributes = attribute [,attribute ...]
attribute = WIDTH {OFF|line-width} |
EOL end-of-line [END] [DELAY seconds] | OFF |
APPEND
end-of-line = string-expression, evaluating to a string
of eight characters or less.
seconds = numeric-expression, rounded to the timing
precision of the computer clock
line-width = numeric-expression, rounded to an integer

Sample: PRINTALL IS Centronix
PRINTALL IS PRT;EOL CHR$(10) & CHR$(13) DELAY .5
PRINTALL IS Dev;WIDTH 120,EOL A$ END
View Sample:    PRINTALL IS.BAS    (also found in examples directory)
Description:

PRINTALL IS defines where to send output from print-all mode. When print-all mode is on, all
messages output to the screen (including output area, DISP line, keyboard line and message
line) are also output to the PRINTALL device. When print-all mode is off, output appears only in
the normal places, and no information is sent to the PRINTALL target. The PRINTALL device is
the CRT after start-up and SCRATCH A.

The print-all mode is toggled between on and off each time the PRT ALL key is pressed.
STATUS(KBD,1) returns a 1 if print-all mode is on and 0 if it is off. A program can turn print-all
mode on with CONTROL KBD,1;1 and off with CONTROL KBD,1;0.

Print-all is a powerful debugging tool. Use it in connection with TRACE to print TRACE messages
about program execution. Also, certain error conditions can produce more than one line of
output. Only the last message is visible on the message line. With print-all on, all the messages
can be read on the PRINTALL device.

Destinations
The output can be sent to a device (usually a printer) or file. If the destination is a file, it must be
an existing ordinary file or a BDAT file.

Sent to a printer, PRINTALL allows permanent logging of output.

Attributes
The EOL attribute specifies a new end-of-line string of up to eight characters. The END attribute
specifies an EOL to be sent with the last character of the EOL string. The DELAY attribute
specifies a time to wait after sending the EOL string and before continuing with program
execution. The delay is in seconds and should be in the range 0.001 to 32.767 but is rounded to
the timing resolution of the computer. The OFF attribute returns the EOL string to the default
CR/LF, no EOL and no DELAY.

The WIDTH attribute specifies the maximum number of characters sent to the printing device
before an automatic EOL sequence is sent. If WIDTH OFF is specified, the width is set to
infinity. WIDTH OFF is the default.

If APPEND is specified and output is to a file, the file position is moved to the end-of-file before
any data is sent to the file. If APPEND is not specified, the file contents are replaced with new
data.

See Also:
CAUSE ERROR, CLEAR ERROR, ERRL, ERRLN, ERRM$, ERRN, ERROR RETURN, ERROR SUBEXIT,
TRACE, XREF

PRINTER IS

Specifies the system printing device.
Syntax: PRINTER IS destination [;attributes]

where: destination = device-selector | file-specifier
attributes = attribute [,attribute ...]
attribute = WIDTH {OFF|line-width} |
EOL end-of-line [END] [DELAY seconds] | OFF |
APPEND
end-of-line = string-expression, evaluating to a string
of eight characters or less.
seconds = numeric-expression, rounded to the timing
precision of the computer clock
line-width = numeric-expression, rounded to an integer

Sample: PRINTER IS 701
PRINTER IS "Myfile";WIDTH 80
PRINTER IS 12;EOL A$ DELAY .5
PRINTER IS Dev;WIDTH 120,EOL My$ END
View Sample:    PRINTER IS.BAS    (also found in examples directory)
Description:

PRINTER IS specifies the destination for all PRINT, CAT and LIST statements which do not
specify a destination. The PRINTER device is the CRT at start-up and after SCRATCH A.

Destinations
The output can be sent to a device (usually a printer) or a file. If the destination is a file, it must
be an existing ordinary file or a BDAT file. If a file is specified, it is positioned to the beginning
(unless APPEND is specified) and closed when another PRINTER IS or SCRATCH A statement is
executed.

Attributes
The EOL attribute specifies a new end-of-line string of up to eight characters. The END attribute
specifies an EOL to be sent with the last character of the EOL string. The DELAY attribute
specifies a time to wait after sending the EOL string and before continuing with program
execution. The delay is in seconds and should be in the range 0.001 to 32.767, but is rounded to
the timing resolution of the computer. The OFF attribute returns the EOL string to the default
CR/LF, no EOL and no DELAY.

The WIDTH attribute specifies the maximum number of characters sent to the printing device
before an automatic EOL sequence is sent. If WIDTH OFF is specified, the width is set to
infinity. If WIDTH is not specified, it defaults to the width of the screen.

If APPEND is specified and output is to a file, the file position is moved to the end-of-file before
any data is sent to the file. If APPEND is not specified, the file contents are replaced with new
data.

See Also:
CAT, IMAGE, LIST, PRINT

PROTECT

Changes file attributes.
Syntax: PROTECT file-specifier,protect-code

Sample: PROTECT Mine$,"H"
PROTECT Name$,"R"
View Sample:    PROTECT.BAS    (also found in examples directory)
Description:

The PROTECT command differs from HP BASIC's PROTECT command. Under operating
systems, like DOS, which do not support file passwords, the protect code is an operating system
dependent string giving the file protections to be assigned to the file.

PROTECT is used to set file attributes. Three attributes are supported: read-only, system and
hidden. The protect-code should be a numeric expression which contains zero, one or more of
the characters "R", "S" and "H". Any attributes specified are turned on, any attributes not
specified are turned off. For example:

PROTECT "file1","" ! turn off all attributes
PROTECT "file2","S" ! System, but not R or H

See Also:
CAT, CHECKREAD, COPY, CREATE, INITIALIZE, MSI, PRINT LABEL PURGE, READ LABEL, RENAME,
SYSTEM$("MSI")

PROUND

Rounds the argument to the specified power of ten.
Syntax: PROUND(numeric-expression, power-of-ten)

Sample: Logic=PROUND(Express,-2)
PRINT PROUND(Amount,Degree)
View Sample:    PROUND.BAS    (also found in examples directory)
Description:

The power-of-ten is a numeric expression, which is rounded to an integer. It specifies the digit
position where the number should be rounded. Positive values are to the left of the decimal
point and negative values are to the right. For example, PROUND(PI,0) rounds to the nearest
integer (10^0) and PROUND(PI,-2) rounds to the nearest hundredth (10^(-2)).

See Also:
CINT, DROUND, FIX, FRACT, INT, REAL

PRT

Returns the default device selector for the printer.
Syntax: PRT

Sample: PRINTER IS PRT
PRINT "Default PRT is",PRT
View Sample:    PRT.BAS    (also found in examples directory)
Description:

The PRT function returns a constant representing the conventional printer interface select code.
PRT exists to provide a useful mnemonic for the most common device selector for a printer.
While PRT returns the conventional device selector for a printer, any legal device selector may
be used in place of PRT in the PRINTER IS command (see PRINTER IS). The following are several
common examples:

PRINTER IS 9 !serial printer
PRINTER IS CRT !the display
PRINTER IS 70102 !2 IEEE-488 printers

PRT returns the constant 10. This is different from HP BASIC, which returns the constant 701. On
the PC, most printers are connected to the parallel printer port, making 10 the most common
printer device selector. With HP BASIC, most printers are connected to the HP-IB interface and
have a primary address of 1, making 701 the most common printer device selector. To provide
compatibility with existing software, the HTBasic PRT can be redefined to 701 (or any other
value) with the CONFIGURE PRT statement.

See Also:
CONFIGURE PRT, CRT, KBD, PRINTER IS

PURGE

Deletes a file or a directory on a mass storage media.
Syntax: PURGE { file-specifier | directory-specifier }

Sample: PURGE "Work"
PURGE "ADir/BDir/Cdir"
View Sample:    PURGE.BAS    (also found in examples directory)
Description:

The PURGE statement is used to delete a file or a directory. All data in the file is lost when the
file is purged. PURGE will not delete a directory unless there are no files in that directory
(except "." and ".."). The directory can not be the root directory and it can not be the current
directory.

Neither a file nor a directory can be deleted if it has the read-only attribute. Use the PROTECT
statement to clear the attribute before deleting the file. Windows does not allow an open file to
be deleted. To delete a file or directory you must have the proper permissions.

See Also:
CAT, COPY, CREATE, INITIALIZE, LINK, MASS STORAGE IS, PRINT LABEL , PROTECT, READ LABEL,
RENAME, SYSTEM$("MSI")

QUIT

Closes the BASIC child window and returns to blank parent window.
Syntax: QUIT

Sample: QUIT
View Sample:    QUIT.BAS    (also found in examples directory)
Description:

QUIT is used to close the open program and return to a blank parent window. To close the entire
HTBasic application use QUIT ALL.

See Also:
EXECUTE

QUIT ALL
Quits BASIC and returns to the operating system.

Syntax: QUIT ALL

Sample: QUIT ALL
View Sample:    QUITALL.BAS    (also found in examples directory)
Description:

QUIT ALL is used to leave the BASIC programming environment and return to the computer's
operating system. If the program is in a paused state, a STOP is automatically executed to close
any open files before quitting.

See Also:
EXECUTE

RAD

Sets the trigonometric mode to radians.
Syntax: RAD

Sample: RAD
View Sample:    RAD.BAS    (also found in examples directory)
Description:

All angle arguments and functions that return an angle measurement use the current
trigonometric mode which can be either radians or degrees. RAD sets the trigonometric mode to
radians. The default trigonometric mode at start-up or after a SCRATCH A is radians. A
subprogram will use the same trigonometric mode as its caller unless it executes a RAD or DEG
statement. Upon returning to the caller the previous trigonometric mode is restored.

See Also:
ACS, ASN, ATN, COS, DEG, SIN, TAN

RANDOMIZE

Selects a seed for the RND function.
Syntax: RANDOMIZE [seed]

Sample: RANDOMIZE
RANDOMIZE Seed*PI
View Sample:    RANDOMIZE.BAS    (also found in examples directory)
Description:

The random number generator starting point is set to the user specified value. If no value is
specified, the starting point is chosen at random. The seed value is a numeric expression
rounded to an integer. If it is less than one, a value of one is used. If it is less than 2^31-2, its
value is used. If it is larger, then 2^31-2 is used. The seed is reset to 37,480,660 at start-up,
SCRATCH A, SCRATCH, and program prerun.

See Also:
RND

RANK

Returns the number of dimensions in an array.
Syntax: RANK(array-name[$])

Sample: RANK(Color)
RANK(File$)
IF RANK(A)=2 THEN PRINT "Two Dims"
View Sample:    RANK.BAS    (also found in examples directory)
Description:

RANK returns an INTEGER value from one to six that specifies the number of dimensions that
are defined for the array.

See Also:
BASE, DIM, MAXLEN, SIZE

RATIO

Returns the ratio of X to Y hard-clip limits for the PLOTTER IS device.
Syntax: RATIO

Sample: WINDOW 0,RATIO,-1,1
Xmax=100*MAX(1,RATIO)
Ymax=100*MAX(1,1/RATIO)
View Sample:    RATIO.BAS    (also found in examples directory)
Description:

RATIO is useful for VIEWPORT and WINDOW calculations and for knowing the shape of the
graphic screen or plotter paper.

See Also:
CLIP, SHOW, VIEWPORT, WINDOW

READ

Reads values from DATA statements.
Syntax: READ variable [,variable ...]

where: variable = variable-name[$] [(*)] |
numeric-name [(subscripts)] |
string-name$ [(subscripts)] [sub-string]
subscripts = subscript [,subscript...]

Sample: READ Line,A$
READ Answer$(N)[20;5]
READ A,B,C(I,J)
READ Array(*)
View Sample:    READ.BAS    (also found in examples directory)
Description:

READ and DATA statements can conveniently initialize multiple variables from data embedded
in the program. An array may be read in row-major order using the full array specifier, "(*)".
DATA statements are stored as strings and the VAL function is used to read numeric values. The
value is rounded to an integer if an integer variable is specified.

The first READ statement in a context reads the first DATA statement in that context. Each
READ statement thereafter maintains a DATA pointer that moves to the next item after each is
read from the DATA statement. The DATA pointer can be reset to the beginning of any DATA
statement in the context with the RESTORE statement.

Complex numbers are read in rectangular form, the real part first, followed by the imaginary
part. The two parts should be separated by a comma.

See Also:
DATA, RESTORE

READ KEY

Returns one or more softkey macro definitions.
Syntax: READ KEY key-number, string-variable$ [(subscripts)] [sub-string]

READ KEY key-number, string-array$(*)

Sample: READ KEY 2,Keytwo$
READ KEY First_key,Several_keys$(*)
View Sample:    READ KEY.BAS    (also found in examples directory)
Description:

Softkey macros defined with EDIT, LOAD or SET KEY can be read with this statement. The key-
number is a numeric expression which is rounded to an integer and should be in the range zero
through twenty-three. If a simple string or array element is specified, then only one key is
returned. If a string array is specified, then successive keys, starting with the key-number
specified, are returned into the elements of the string array.

See Also:
EDIT KEY, LIST KEY, LOAD KEY, RE-STORE KEY, SCRATCH, SET KEY, STORE KEY

READ LABEL

Reads a volume label.
Syntax: READ LABEL string-variable$ [FROM volume-specifier]

Sample: READ LABEL Id$
READ LABEL Name$ FROM Vol$
View Sample:    READ LABEL.BAS    (also found in examples directory)
Description:

The volume label on the specified media is read and returned into the string variable. If no mass
storage unit specifier is given, the MSI device is used.

See Also:
PRINT LABEL

READ LOCATOR

Reads the locator device without waiting for a digitize operation.
Syntax: READ LOCATOR x-variable,y-variable [,string-name$]

Sample: READ LOCATOR X,Y
READ LOCATOR Xcoor,Ycoor,Position$
View Sample:    READ LOCATOR.BAS    (also found in examples directory)
Description:

The locator device position is read into the X and Y variables without waiting for a digitize
operation. The current GRAPHICS INPUT IS device coordinates are in default units or the units
defined in a WINDOW or SHOW statement. The optional string variable will receive the 8 byte
status message defined as follows:

Byte Meaning 
1 Button Status - Status of the digitizing button on the

locator. If the character is a "1", then the button is
pressed; if it is a "0", then the button is not pressed.

2 Comma delimiter character.
3 Clip Indicator - If the character is a "0", then the

point is outside the hard-clip limits. If a "1", the point
is inside the hard-clip limits, but outside the soft-clip limits
(clipping rectangle - see CLIP). If a "2" then
it's inside the soft-clip limits.

4 Comma delimiter character.
5 Tracking ON/OFF - If the character is a "0", then

tracking is off; if a "1", then tracking is on.
6 Comma delimiter character.
7-8 Button Positions - If S$ is the status string and B is the

button number you wish to test, then BIT(VAL(S$[7,8]), B-1)
returns one if B is down and zero if B is up.

See Also:
DIGITIZE, GRAPHICS INPUT IS, SET ECHO, SET LOCATOR, TRACK, WHERE

READIO

Reads a hardware register or a memory byte/word.
Syntax: READIO(interface-select-code, hardware-register)

READIO(special-interface, address)
READIO(9827, simple-var)

where: hardware-register = numeric-expression rounded to an integer
special-interface = numeric-expression rounded to an integer,
legal values are explained in the text
address = numeric-expression rounded to a linear address
simple-var = numeric-name | numeric-array-element

Sample: Control=READIO(Centronix,2)
Shift_flag=READIO(9826,&H417)

View Sample:    READIO.BAS    (also found in examples directory)

Description:
Hardware Registers
The contents of a hardware interface register are read and returned on the specified interface.
Do not mix READIO WRITEIO operations with STATUS/CONTROL operations. Do not attempt to
use READIO WRITEIO registers unless you are very familiar with the hardware; use the
STATUS/CONTROL registers instead. Consult the hardware manuals for your computer for
complete documentation on interface hardware. The User's Guide lists the READIO WRITEIO
registers for the interface device drivers included with HTBasic. For other device drivers, the
documentation included with the driver lists the register definitions.

READIO WRITEIO registers in HTBasic are not compatible with HP BASIC READIO WRITEIO
registers when the interface hardware is not the same. TransEra's IEEE-488 and HP's HP-IB use
the same IEEE-488 chip; therefore, the READIO WRITEIO registers are identical. The serial
interface hardware registers differ not only if the UART chip is different, but also if the circuitry
surrounding the chip is different. The TransEra GPIO is designed to be READIO WRITEIO
compatible with HP's GPIO.

Special Interface Select codes
There are a number of special interface select codes which can be read with the READIO
statement. The legal values for special-interface are given in the following paragraphs. For
compatibility with earlier releases of HTBasic, READIO(8080,L) and READIO(-8080,L) are still
supported but have been replaced with INP and INPW, respectively.

PEEK Memory
READIO(9826,L) and READIO(-9826,L) are used to "peek" at the contents of a memory byte or
word, respectively. L specifies the address of the byte/word to peek. If peeking a word and L is
odd, the even address L-1 is used. Where L specifies an address within the HTBasic process.

Warning: Peek should only be done on addresses returned by READIO(9827,I)! Peeking any
other location can cause your system to crash, data to be lost and damage to your computer
hardware. Use of this function for any other address is unsupported, and TransEra cannot be
held responsible for any consequences.

Locating a Numeric Variable
READIO(9827,I) is used to locate the variable I. READIO(9827,A(0)) is used to locate the
address of the first element of A. These operations are useful when a small assembly subroutine
is stored in a variable and called with WRITEIO.

See Also:
CONTROL, INP, OUT, STATUS, WRITEIO

REAL

Reserves storage for floating point variables and arrays.
Syntax: REAL variable [,variable...]

where: variable = numeric-name [(bounds) [BUFFER]]
bounds = [lower-bound :] upper-bound [,bounds]
lower and upper-bound = integer constant in the range -32768    to 32767

Sample: REAL X,Buf(500) BUFFER
REAL Volts(-10:10,4)
View Sample:    REAL.BAS    (also found in examples directory)
Description:

REAL declares, dimensions and reserves memory for floating point variables and arrays. REAL
variables use eight bytes of storage space. An array's maximum dimension is six and each
dimension can hold a maximum of 32,767 elements. If a lower bound is not specified, the
default is the OPTION BASE value (0 or 1). A REAL variable may be declared a buffer by
specifying BUFFER after the variable name. BUFFER variables are used with the TRANSFER
statement.

See Also:
ALLOCATE, DEF FN, COM, COMPLEX, DIM, INTEGER, SUB, TRANSFER

REAL

Converts an INTEGER or COMPLEX number to REAL.
Syntax: REAL(numeric-expression)

Sample: PRINT REAL(Z)
DRAW REAL(C),IMAG(C)
View Sample:    REAL.BAS    (also found in examples directory)
Description:

The real part of a complex number is returned with REAL, and the imaginary part with IMAG. To
express the parts of a complex number in polar form, use ABS and ARG:

PRINT "Rectangular form: Real = ";REAL(Z),"Imag =";IMAG(Z)
PRINT "Polar form: Magnitude = ";ABS(Z),"Angle = ";ARG(Z)

See Also:
ABS, ARG, CMPLX, CONJG, IMAG

RECTANGLE

Draws and optionally fills and edges rectangles.
Syntax: RECTANGLE width,height [,FILL] [,EDGE]

where: width and height = numeric-expressions

Sample: RECTANGLE 10,25
RECTANGLE 8,-10,FILL,EDGE
View Sample:    RECTANGLE.BAS    (also found in examples directory)
Description:

A rectangle is a polygon described by its width and height displacement from the current pen
position.

The signs of the width and height determine the position of the rectangle relative to the current
pen position. If the width is positive, the pen position is on a left corner of the rectangle. If the
width is negative, the pen position is on a right corner of the rectangle. If the height is positive,
the pen position is on a lower corner of the rectangle. And if the height is negative, the pen
position is on an upper corner.

The rectangle can be filled with the current AREA color and edged with the current PEN color and
LINE TYPE. If neither are specified, EDGE is assumed.

The PIVOT and PDIR statements affect the RECTANGLE statement.

See Also:
LINE TYPE, PDIR, PEN, PIVOT, PLOT, POLYGON, POLYLINE

REDIM

Redimensions an array by changing the subscript ranges.
Syntax: REDIM array-name[$](bounds) [,array-name[$](bounds)...]

where: bounds = [lower-bound:] upper-bound [,bounds]
lower and upper-bound = numeric-expressions rounded to integers

Sample: REDIM Array(Lowbnd:Upbnd)
REDIM Myarray$(I,J,K,L)
View Sample:    REDIM.BAS    (also found in examples directory)
Description:

An array can only be redimensioned if the number of dimensions is the same as in the original
DIM statement and the total number of elements does not exceed the total in the DIM
statement. Also, to redimension an array declared in a COM statement, the COM declaration
must include subscript information (as opposed to a full array specifier, "(*)").

REDIM does not change the values presently stored in memory, but because the number of
elements in each dimension might change, the values in each element may appear to "move" to
another element.

See Also:
ALLOCATE, COM, COMPLEX, DIM, INTEGER, REAL

REM

Begins a REMark or comment line for program documentation.
Syntax: REM any text

program statement    ! any text

Sample: REM This statement is not executed
Info=0 ! Clear flag byte
View Sample:    REM.BAS    (also found in examples directory)
Description:

A REM statement is used to insert comments into programs. The REM statement may contain
any text you wish. It is useful in explaining what the program is doing. A comment tail, "!", is
similar to the REM statement, however, the comment tail may appear on the same line as a
program statement. Any text may appear to the right of the comment tail and is ignored when
the line is executed. When an INDENT command is given, the position of a comment tail is left
unchanged.

See Also:
EDIT, INDENT, REN

REMOTE

Sets the remote state on a IEEE-488 device.
Syntax: REMOTE {@io-path | device-selector}

Sample: REMOTE Dev
REMOTE @Pwsply
Description:

The IEEE-488 bus remote line is asserted. If the computer is the active controller and primary
addresses are specified, it listen addresses the devices to switch them to remote mode. The
remote line is asserted if the computer is the system controller and ISC select code is specified.
The IO-path or device-selector must refer to one or more IEEE-488 devices or to the IEEE-488
interface select code.

If the computer is not the system controller or it is not the active controller and primary
addresses are specified, an error is generated.

See Also:
ABORT , CLEAR, LOCAL, PASS CONTROL, PPOLL, REQUEST, SEND, SPOLL, TRIGGER

REN

Renumbers program lines.
Syntax: REN [start-number [,increment]] [IN begin-line [,end-line]]

where: line = line-number | line-label
increment = integer constant

Sample: REN 1000 IN 100,800
REN 1200
REN 100,5
REN 150,1 IN 140,Mark

Description:
This statement renumbers program statements, including the line references in all program
statements such as GOSUB and GOTO to coincide with the new line numbers.

You can optionally specify the starting position, the increment between lines or a range of lines
to renumber. The default value for both the start line number and the increment is ten.

Note: You cannot specify a new starting line number that would cause the lines to change
position with respect to other existing program lines. Use MOVELINES or COPYLINES to do this.

See Also:
COPYLINES, MOVELINES

RENAME

Changes the name of a file.
Syntax: RENAME old-file-specifier TO new-file-specifier

Sample: XT=RENAME "PROG.DAT" TO "CURVE.DAT"
RENAME "X" TO "Xcalc"
RENAME Volume$&Old$ TO New$
View Sample:    RENAME.BAS    (also found in examples directory)
Description:

RENAME changes the name of a file. Both the old and the new names may be specified as
string expressions. The new name must not already exist on the mass storage device.

If you are using RENAME to move a file from one place in a hierarchical file system to another,
the HTBasic RENAME requires that both file specifiers be complete and both directories be on
the same mass storage device. HTBasic does not require that the destination be on the same
mass storage device.

See Also:
CAT, COPY, CREATE, INITIALIZE, MASS STORAGE IS, PRINT LABEL, PROTECT, PURGE, READ
LABEL, RENAME, SYSTEM$("MSI")

REPEAT ... UNTIL

Defines a loop that is repeated UNTIL a condition is satisfied.
Syntax: REPEAT

statements
UNTIL numeric-expression

where: statements = zero, one or more program statements

Sample: 770 REPEAT
780 CALL Test(X)
790 X=X+Next
800 UNTIL X=Last
View Sample:    REPEAT UNTIL.BAS    (also found in examples directory)
Description:

The statements between the REPEAT and UNTIL are first executed. When the UNTIL statement
is reached, the expression is evaluated. If the expression is false (zero), the statements between
the REPEAT and UNTIL are executed again. If the expression is true (non-zero), execution
continues with the statement following the UNTIL.

See Also:
FOR, LOOP, SELECT, WHILE

REQUEST

Sends a Service Request SRQ on the IEEE-488.
Syntax: REQUEST {@io-path | interface-select-code} ; response-value

where: io-path = I/O path assigned to the IEEE-488 interface
response-value = numeric-expression rounded to an integer

Sample: REQUEST @Gpib;Serialpoll
REQUEST Isc;BINIOR(Bit3,64)
Description:

A Service Request, SRQ, is sent by a non-active controller on the IEEE-488 bus. If the computer
is the active controller or if the device-selector or the IO-path specifies address information, an
error is generated.

To request service, the response value must have bit six set. The SRQ line will remain set until
polled by the active controller or another REQUEST statement is executed with bit six clear.

See Also:
ABORT , CLEAR, LOCAL, PASS CONTROL, PPOLL, REMOTE, SEND, SPOLL, TRIGGER

RE-SAVE

Copies the program into the specified ASCII file.
Syntax: RE-SAVE file-specifier [,start-line [,end-line]]

where: line = line-number | line-label

Sample: RE-SAVE "Story"
RE-SAVE "CALPROG",1000,2000
RE-SAVE "TREE\BRANCH\FILE",Label1
Description:

RE-SAVE outputs any range of program lines to an ASCII file. The resulting program can be re-
entered with the GET statement.

If the specified file already exists, the old contents are discarded before the SAVE takes place.
The program is then stored out in the same format, ASCII (LIF ASCII) or ordinary (DOS ASCII,
UNIX ASCII, etc.), as the previous file. If it does not exist, a new file is created whose type
depends on the setting of CONFIGURE SAVE ASCII.

See Also:
CONFIGURE SAVE ASCII, GET, LIST, LOAD, RE-STORE, SAVE, STORE

RES

Returns the result of the last numeric keyboard calculation.
Syntax: RES

Sample: Sum=RES+Sum
PRINT "User Response:";RES
View Sample:    RES.BAS    (also found in examples directory)
Description:

Typing in a numeric or string expression and pressing ENTER causes the computer to evaluation
the expression and print the result on the message line. This is called "calculator mode" and
allows you to use your computer as you would a hand calculator. If the result is numeric, it is
saved for later recall by using the RES function.

RESET

Resets an interface or file or buffer pointers.
Syntax: RESET {@io-path | interface-select-code}

Sample: RESET 9
RESET Gpib
RESET @Buff
View Sample:    RESET.BAS    (also found in examples directory)
Description:

The RESET statement directed to an interface performs an interface reset. When directed to a
file it sets the file position pointer to the beginning of the file. When directed to a buffer it sets
all buffer control entries to their initial values with the empty and fill pointers set to one and all
other entries set to zero.

RESTORE

Specifies which DATA statement to use for the next READ operation.
Syntax: RESTORE [{line-number | line-label}]

Sample: RESTORE
RESTORE 950
RESTORE Star
View Sample:    RESTORE.BAS    (also found in examples directory)
Description:

The next READ statement gets its data from the current data pointer. RESTORE sets the data
pointer to the specified program line. If that line is not a DATA statement the next higher
numbered DATA statement will be used for the next READ statement. If no line is specified, the
data pointer is set to the first DATA statement in the current context.

See Also:
DATA, READ

RE-STORE

Stores the BASIC program in a file.
Syntax: RE-STORE file-specifier

Sample: RE-STORE "FFT"
RE-STORE Volume$&Myfile$
View Sample:    RE-STORE.BAS    (also found in examples directory)
Description:

The program currently in memory is STOREd in the file in binary form. If the file already exists, it
must be a PROG file. The old contents are discarded and the file is replaced with the current
program in memory. If it does not exist, a new PROG file is created.

See Also:
GET, LIST, LOAD, RE-SAVE, RE-STORE KEY, SAVE, STORE

RE-STORE KEY

Stores the KEY definitions in a file.
Syntax: RE-STORE KEY file-specifier

Sample: RE-STORE KEY "Definition"
RE-STORE KEY "A:KEYS"
View Sample:    RE-STORE KEY.BAS    (also found in examples directory)
Description:

Softkey macro definitions are stored into the specified file. If the file already exists, the old
contents are discarded and the present key definitions are stored. If it does not exist, a new
BDAT file is created.

Using FORMAT OFF, the definition for each defined softkey is written to the file by outputting two
items. The first item is an integer, specifying the key number. The second item is a string, giving
the key definition.

See Also:
EDIT KEY, LIST KEY, LOAD KEY, READ KEY, SCRATCH, SET KEY, STORE KEY

RESUME INTERACTIVE

Restores the normal functions of program control keys.
Syntax: RESUME INTERACTIVE

Sample: RESUME INTERACTIVE
View Sample:    RESUME INTERACTIVE.BAS    (also found in examples directory)
Description:

The normal functions of the program control keys CLR I/O, ENTER, PAUSE, RESET, STEP and STOP
are enabled. These keys are disabled by SUSPEND INTERACTIVE.

See Also:
SUSPEND INTERACTIVE

RETURN

Returns to the program line following the last GOSUB line.
Syntax: RETURN

Sample: 200 GOSUB 300
...
299 STOP
300 PRINT A,B,C
310 RETURN
View Sample:    RETURN.BAS    (also found in examples directory)
Description:

The GOSUB statement transfers control to a subroutine; the RETURN statement transfers
control back to the next statement following the GOSUB. You can have many GOSUBs to the
same subroutine and a RETURN occurring in that subroutine returns control to the statement
following the specific GOSUB used to get to the subroutine. You can only enter a subroutine by
using GOSUB. If you don't use GOSUB, the RETURN statement causes an error when executed.

The RETURN keyword is also used to return values from user-defined functions. See DEF FN for
an explanation of RETURN used in this way.

See Also:
DEF FN, GOSUB

REV$
 Reverses the sequence of characters in a string.

Syntax: REV$(string-expression)

Sample: Backward$=REV$(Forward$)
Print REV$("radaR")
View Sample:    REV$.BAS    (also found in examples directory)
Description:

A string that contains the reverse sequence of characters of its argument is returned. This can
help when searching for the last occurrence of a string.

See Also:
CHR$, LWC$, NUM, RPT$, POS, TRIM$, UPC$, VAL, VAL$

RND

Returns a pseudo-random number.
Syntax: RND

Sample: IF RND>0.25 THEN GOTO Start
Percent=RND*100
View Sample:    RND.BAS    (also found in examples directory)
Description:

A pseudo-random number greater-than zero and less-than one is returned. A seed value
determines the starting point in the series. The seed can be modified using the RANDOMIZE
statement. The default seed at start-up, SCRATCH, SCRATCH A and prerun is 37,480,660. The
series of numbers returned is not guaranteed to be the same on different versions of HTBasic

See Also:
RANDOMIZE

ROTATE

Shifts a 16 bit binary value with wraparound.
Syntax: ROTATE(numeric-expression, distance)

where: distance = numeric-expression rounded to an integer

Sample: B1=ROTATE(B2,5)
Word=ROTATE(Word,Places)

View Sample:    ROTATE.BAS    (also found in examples directory)

Description:
The numeric expression is rounded to an integer. The resulting integer, in binary form, is rotated
the specified distance. The distance must be in the range 0 to ±15. If the distance is positive,
then bits are moved to the right. Any bits moved out of the right-most bit (the least significant
bit) are moved into the left-most bit (the most significant bit). If the distance is negative, then
bits are moved to the left. Any bits moved out of the left-most bit are moved into the right-most
bit.

For ROTATE(100,5) the number 100 is treated as a binary number and is rotated right five bits
as follows:

100 = 0000000001100100
ROTATE(100,5) = 0010000000000011

The result is returned as the decimal integer, 8195.

See Also:
BINAND, BINCMP, BINEOR, BINEQV, BINIMP, BINIOR, BIT, SHIFT

RPLOT

Moves the pen relative to the current graphic location.
Syntax: RPLOT x-displacement, y-displacement [,pen-control]

RPLOT numeric-array(*) [,FILL] [,EDGE]

Sample: RPLOT 5,2
RPLOT 5,-2,-1
RPLOT Array(*)
RPLOT Vector(*),FILL,EDGE
View Sample:    RPLOT.BAS    (also found in examples directory)
Description:

RPLOT is the same as IPLOT except that it moves the pen relative to the local origin. The local
origin is the logical pen position after one of the following statements: AXES, DRAW, FRAME,
GINIT, GRID, IDRAW, IMOVE, IPLOT, LABEL, MOVE, PLOT, POLYGON, POLYLINE, RECTANGLE and
SYMBOL. See PLOT for a full explanation of RPLOT arguments.

The PIVOT and PDIR statements affect the RPLOT statement.

See Also:
AREA, CLIP, DRAW, IPLOT, MOVE, PLOT, POLYGON, POLYLINE

RPT$

Returns a string replicated a specified number of times.
Syntax: RPT$(string-expression, repeat-count)

Sample: A$=RPT$("!",100)
PRINT RPT$("*",50)
PRINT RPT$(" ",(Centervalue/2)

View Sample:    RPT$.BAS    (also found in examples directory)

Description:
The repeat count is a numeric expression rounded to an integer value. If it is zero, a zero length
string is returned. If it is negative or the resulting string would be greater than 32,767
characters, an error is generated.

See Also:
CHR$, LWC$, NUM, REV$, POS, TRIM$, UPC$, VAL, VAL$

RUN

Starts program execution.
Syntax: RUN [line-number | line-label]

Sample: RUN
RUN 1000
RUN Next

Description:
RUN is executed in two parts, prerun initialization and program execution.

The prerun part reserves memory space for variables declared in DIM, REAL, INTEGER, COMPLEX
and COM statements or implied in the program context. Numeric variables are set to zero and
string variables are set to zero length strings. Prerun also checks for multi-line syntax errors
such as illegal program structure, array references and mismatched COM statements. If prerun
detects any errors, they are reported to the user and the program halts.

If prerun detects no errors, the MAIN program is run starting at the beginning or if a program line
or label is specified, it starts execution at the specified line. The program line or label must be in
the MAIN context. The program runs normally until it encounters a PAUSE, a STOP or END
statement, an error or a TRACE PAUSE line.

See Also:
CONT, END, LOAD, PAUSE, SCRATCH, STOP

RUNLIGHT

Controls the display of the pseudo runlight on the display.
Syntax: RUNLIGHT { ON | OFF }

Sample: RUNLIGHT OFF
View Sample:    RUNLIGHT.BAS    (also found in examples directory)
Description:

The pseudo RUNLIGHT is a single character in the lower right-hand corner of the display which
indicates the state of HTBasic. By default, it is displayed. When doing screen dumps, the
character can be unsightly so it is best to do a RUNLIGHT OFF before doing the dump. The
meanings of the pseudo runlight characters are given in the following table.

Character Meaning
? Input
H Help
* Immediate command
R Running
C Change
F Find
E Edit
S SUBs
 - Paused
(none) Idle

See Also:
CLEAR LINE, CLEAR SCREEN, KEY LABELS

SAVE

Saves the current program into an ASCII file.
Syntax: SAVE file-specifier [,start-line [,end-line]]

where: line = line-number | line-label

Sample: SAVE "DRAFTER"
SAVE "Pennies",100,Sort
SAVE "A:MYPROG"
View Sample:    SAVE.BAS    (also found in examples directory)
Description:

SAVE outputs any range of program lines to an ASCII file. Depending on the setting of
CONFIGURE SAVE ASCII, the file type will either be ASCII (LIF ASCII) or ordinary (DOS ASCII, UNIX
ASCII, etc.). The resulting program can be re-entered with the GET statement.

CONFIGURE SAVE ASCII sets the file type SAVE uses when saving a file to disk. The default
setting, ON, produces a LIF ASCII file. This type of file is useful for exchanging programs with HP
Workstations and for saving programs with string literals that contain embedded control
characters such as carriage-returns or line-feeds in string literals since GET will interpret them
as end-of-line indicators.

If the specified file already exists, SAVE generates an error message; whereas RE-SAVE will
reuse an existing file.

See Also:
GET, LIST, LOAD, RE-SAVE, RE-STORE, STORE

SBYTE

Checks for second byte of a two byte character.
Syntax: SBYTE(string)

Sample: PRINT SBYTE(A$)
IF SBYTE(A$[I]) THEN PRINT "Two Bytes"
Description:

SBYTE is used with FBYTE to determine whether a character is one or two bytes long. SBYTE
returns a one if the second byte of the string argument is in the valid range for the second byte
of a two byte character.

This function is only available and enabled in specific versions of HTBasic.

See Also:
CVT$, FBYTE

SC

Returns the interface select code associated with an I/O path name.
Syntax: SC(@io-path)

Sample: Code=SC(@Dev)
View Sample:    SC.BAS    (also found in examples directory)
Description:

Only the interface code is returned if the IO-path is assigned to a device-selector with primary
addressing specified. A zero is returned if the IO-path name is assigned to a buffer.

See Also:
ASSIGN

SCRATCH

Clears user memory.
Syntax: SCRATCH [A|ALL | B|BIN | C|COM | KEY [key-number] |

R|RECALL]

Sample: SCRATCH
SCRATCH KEY 2
SCRATCH C
View Sample:    SCRATCH.BAS    (also found in examples directory)
Description:

SCRATCH allows you to clear the BASIC program, program variables, COM variables, softkey
macro definitions and the recall buffer. The following paragraphs explain each variation of
SCRATCH:

SCRATCH
Deletes the current BASIC program and any variables not in COM.

SCRATCH A or ALL
SCRATCH A clears the BASIC program, all variables, including those in COM and all softkey
macro definitions. Internal parameters are set to their default, start-up values. SCRATCH ALL is
synonymous with SCRATCH A.

SCRATCH B or BIN
In HTBasic, SCRATCH B is equivalent to SCRATCH A. In HP BASIC, it deletes all BINs except the

CRT driver in use. In HTBasic, BINs are used for device drivers which can't be SCRATCHed.
SCRATCH B is synonymous with SCRATCH BIN.

SCRATCH C or COM
SCRATCH C clears all variables including those in COM, but leaves the BASIC program and the
softkey macro definitions intact. SCRATCH COM is synonymous with SCRATCH C.

SCRATCH KEY [key-number]
Without the optional key number, this command clears all the softkey macro definitions. With
the key number, only the specified key is cleared. The key-number may be a numeric expression
which is rounded to an integer and must be in the range zero through twenty-three.

SCRATCH R or RECALL
SCRATCH R clears the keyboard RECALL buffer. SCRATCH RECALL is synonymous with
SCRATCH R.

See Also:
EDIT KEY, LIST KEY, LOAD KEY, READ KEY, RE-STORE KEY, SET KEY, STORE KEY

SECURE

Protects programs lines.
Syntax: SECURE [start-line-number [,end-line-number]]

where: line-number = integer constant

Sample: SECURE
SECURE Payrolla,Payrollb
Description:

The SECURE command protects programs lines so they cannot be listed. Secured lines are listed
as a line number followed by an asterisk "*" character. If no program lines are specified, all
program lines are secured. If no end-line is specified, only the start-line is secured.

Warning: Once a line has been secured it can not be un-secured! Make sure that you have
another copy of the program before you use the SECURE command.

See Also:
EDIT, LIST

SELECT ... CASE

Defines a CASE block structure.
Syntax: SELECT string-or-numeric-expression

CASE case-expression
statements
[CASE ELSE]
statements
END SELECT

where: statements = zero, one or more program statements
including additional CASE statements
case-expression = [relation] value [,case-expression]
relation = { < | <= | = | >= | > | <> | value TO }
value = string-or-numeric-expression

Sample: 10 SELECT Option$
20 CASE "B"
30 A=1
40 CASE "0" TO "9","y","n"
50 A=2
60 CASE ELSE
70 A=0

80 END SELECT
View Sample:    SELECT CASE.BAS    (also found in examples directory)

Description:
The SELECT and END SELECT statements enclose a SELECT structure. The SELECT statement
specifies a numeric or string expression. Within the SELECT structure, CASE statements
introduce alternative program sections to be executed based on the value of the SELECT
statement expression. Each CASE statement type must match the type of expression in the
SELECT statement. If a case-expression contains multiple values, the values are tested from left
to right until a match is found. Any remaining expressions are not tested.

The SELECT expression value is used to test against each CASE statement value or range of
values. The program statements following the first CASE statement to match are executed.
Execution then continues at the line following the END SELECT statement. If none of the CASE
statements match and there is an optional CASE ELSE statement, the program statements
following the CASE ELSE will be executed, otherwise the entire SELECT structure is skipped.

While doing so is not encouraged, jumping into a SELECT structure with a GOTO is legal.
Program statements are executed normally until a CASE statement is encountered. Execution
then continues at the line following the END SELECT statement.

If there is an expression evaluation error in either the SELECT statement or one of the CASE
statements the SELECT statement line number is reported with the error value.

Implementing ELSE IF
Although HTBasic does not have an explicit ELSE IF statement, it is possible to accomplish the
same thing using a SELECT statement. Suppose you wish an ELSE IF construct like this:

10 IF X<-1 THEN
20 !do something here
30 ELSE IF Z=0 THEN
40 !do something else here
50 ELSE
60 !and something else here
70 END IF

This example can be accomplish using the SELECT statement as follows:

5 SELECT 1
10 CASE X<-1
20 !do something here
30 CASE Z=0
40 !do something else here
50 CASE ELSE
60 !and something else here
70 END SELECT

Line 5 states that the first case which evaluates to one will be executed. Since the result of a
logical operator is 0 or 1, the first case with a logical expression that evaluates true will be
executed.

See Also:
FOR, IF, LOOP, REPEAT, WHILE

SEND

Sends messages on the IEEE-488 bus.
Syntax: SEND dest ;message [message ...]

where: dest = {@io-path | interface-select-code}
io-path = I/O path assigned to the IEEE-488 interface
message = MTA | MLA | UNT | UNL |
CMD [expression-list] |
DATA [expression-list [END]] |
TALK primary-address |
LISTEN address-list |
SEC address-list
address-list = address [,address...]
address = numeric-expression rounded to an integer
expression-list = expression [,expression...]
expression = numeric-expression | string-expression

Sample: SEND 7;UNL MTA LISTEN 2 DATA "Bye" END
SEND @Gpib;UNL MLA TALK Primary CMD 24+128
Description:

The SEND statement sends low level IEEE-488 commands and data bytes. IEEE-488 commands
are sent with the ATN line asserted; whereas data bytes are sent without the ATN line asserted.
The computer must be the active controller to use CMD, TALK, UNT, LISTEN, UNL, SEC, MTA
or MLA. Any talk addressed device may send DATA.

Message Action Taken
CMD Sends the expression values as command bytes. CMD with no

items asserts the ATN line.
DATA Sends the expression values as data bytes. If END is

added, EOI is set on the last data byte.
LISTEN Sends the expression values as listen address commands.
MLA Sends the Interface's Listen Address command.
MTA Sends the Interface's Talk Address command.
SEC Sends the expression values as secondary address commands.
TALK Sends the expression value as a talk address command.
UNL Sends the unlisten command.
UNT Sends the untalk command.

See Also:
ABORT, CLEAR, LOCAL, PASS CONTROL, PPOLL, REMOTE, REQUEST, SPOLL, TRIGGER

SEPARATE ALPHA FROM GRAPHICS

On a bit-mapped display, simulates 9836 style alpha/graphics hardware.
Syntax: SEPARATE ALPHA [FROM GRAPHICS]

Sample: IF Display=8 THEN SEPARATE ALPHA FROM GRAPHICS
View Sample:    SEPARATE ALPHA FROM GRAPHICS.BAS    (also found in examples directory)
Description:

SEPARATE ALPHA is the opposite of MERGE ALPHA WITH GRAPHICS. When separate, one or
more bit plane is reserved for alpha text and the remaining planes are reserved for graphic
output. The alpha and graphic planes can then be turned on or off or DUMPed independently.
However, ALPHA text color and graphic pens are limited as shown in the table below.

The following table shows the colors available when SEPARATE ALPHA FROM GRAPHICS is
used, depending on the total number of colors available.

Total Graph Black White Brown Cyan
Colors Pens Alpha Alpha Alpha Alpha
16 0-7 0 8 - -
256 0-63 0 64 128 192

Porting Issues
HP BASIC assigns green to the first pen; HTBasic assigns white. If you prefer green or some
other color, you must explicitly set a range of pen values to the color desired. The range starts
with the white alpha pen value from the table above and continues to one less than the value of
the brown alpha pen value. For 16 color systems, the last value should be 15.    For example, the
following code changes the alpha pen from white to green on a 16 color display:

10 SEPARATE ALPHA FROM GRAPHICS
20 PLOTTER IS CRT,"INTERNAL";COLOR MAP
30 FOR I=8 TO 15
40 SET PEN I INTENSITY 0,1,0
50 NEXT I
60 END

See Also:
MERGE ALPHA WITH GRAPHICS

SET ALPHA MASK

Determines which plane(s) can be modified by ALPHA display operations.
Syntax: SET ALPHA MASK numeric-expression

Sample: SET ALPHA MASK Frame
SET ALPHA MASK 2
SET ALPHA MASK IVAL("1010",2)
IF Frame=5 THEN SET ALPHA MASK 3

Description:
The numeric expression value specifies which display bit planes are modified by alpha display
operations. This statement does not affect monochrome displays. This statement is equivalent
to CONTROL CRT,18.

This statement is not supported by HTBasic. Use    MERGE ALPHA or SEPARATE ALPHA.

See Also:
ALPHA HEIGHT, ALPHA PEN, CLEAR SCREEN, MERGE ALPHA, SEPARATE ALPHA, SET DISPLAY
MASK

SET CHR

Defines the bit-patterns for one or more characters.
Syntax: SET CHR first-character, integer-array(*)

where: first-character = string-expression

Sample: ALLOCATE INTEGER Onechar(1:CHRY,1:CHRX)
SET CHR 65,Onechar(*)
ALLOCATE INTEGER Several(1:5;1:CHRY,1,:CHRX)
SET CHR 66,Several(*)

Description:
This command can be used to redefine the appearance of one or more characters. The computer
display must support redefinition of alpha characters or an error will be returned.

This statement is not supported by HTBasic.

See Also:
CHRX, CHRY, SYMBOL

SET DISPLAY MASK

Specifies which planes can be seen on the alpha display.
Syntax: SET DISPLAY MASK numeric-expression

Sample: SET DISPLAY MASK Visible
SET DISPLAY MASK IVAL("1010",2)

Description:
The numeric expression value specifies which display bit planes are displayed. This statement
does not affect monochrome displays. This statement is equivalent to CONTROL CRT,20;m.

This statement is not supported by HTBasic. Use    MERGE ALPHA or SEPARATE ALPHA.

See Also:
ALPHA HEIGHT, ALPHA PEN, CLEAR SCREEN, MERGE ALPHA, SEPARATE ALPHA, SET ALPHA MASK

SET ECHO

Sets the echo location on the PLOTTER IS device.
Syntax: SET ECHO x-coordinate,y-coordinate

Sample: SET ECHO Xx,Yy
SET ECHO 120,240
View Sample:    SET ECHO.BAS    (also found in examples directory)
Description:

The SET ECHO statement specifies a location for the PLOTTER IS echo indicator. If the PLOTTER
IS device is a display, the echo is a cross-hair. If the PLOTTER IS device is a plotter, the echo is
the pen or device pointer.

The cross-hair is displayed at the specified location if it is within the device limits. If the specified
location is outside the device limits the cross-hair is not displayed. Thus, to turn off the cross-
hair, specify a position off screen.

The plotter pen is moved (with the pen up) to the specified location if it is within the clip limits. If
the specified location is outside the clip limits the pen is moved to and then along the clip limit.

The location returned by the READ LOCATOR statement can be used with the SET ECHO
statement to cause the echo to track the GRAPHICS INPUT IS location.

Use SET LOCATOR to specify a new GRAPHICS INPUT IS location.

See Also:
DIGITIZE, GRAPHICS INPUT IS, PLOTTER IS, READ LOCATOR, SET LOCATOR, TRACK, WHERE

SET KEY

Defines one or more softkey macros.
Syntax: SET KEY key-number, {string-expression | string-array$(*)}

Sample: SET KEY 2,Keytwo$
SET KEY First_key,Several_keys$(*)
View Sample:    SET KEY.BAS    (also found in examples directory)
Description:

Softkey macros may be defined with the SET KEY statement. The key-number is a numeric
expression which is rounded to an integer and should be in the range zero through twenty-three.
If a string expression is specified, then only one key is defined. If a string array is specified, then
successive keys, starting with the key-number specified, are defined from the elements of the
string array.

Once defined, the key definition is displayed in the softkey menu. Pressing the softkey (when no
ON KEY is defined for that key) will type the characters specified in the definition, just as if they
had been typed on the keyboard. The definition can include function keys, such as CLEAR SCR.

If the definition begins with a CLR LN key (CHR$(255) & "#"), only the characters after the CLR
LN will be displayed. If the definition begins with a CONTINUE key, the two characters
(CHR$(255) & "C") will be replaced with the string "CONTINUE". If the definition begins with a
RUN key, the two characters (CHR$(255) & "R") will be replaced with the string "RUN".

See Also:
EDIT KEY, LIST KEY, LOAD KEY, READ KEY, SCRATCH KEY, STORE KEY

SET LOCATOR

Sets a new graphic locator position on the GRAPHICS INPUT IS device.
Syntax: SET LOCATOR x-position,y-position

Sample: SET LOCATOR 20,30
SET LOCATOR Xx,Yy
View Sample:    SET LOCATOR.BAS    (also found in examples directory)
Description:

The SET LOCATOR statement specifies the current location for the GRAPHICS INPUT IS device.
Subsequent movement of the GRAPHICS INPUT IS device will be relative to the new location
specified. SET LOCATOR only works with graphic input devices that use relative locators (i.e.
mouse, arrow-keys) and not with those that use absolute locators (i.e. tablets).

Use SET ECHO to specify a new PLOTTER IS echo location.

See Also:
DIGITIZE, GRAPHICS INPUT IS, READ LOCATOR, SET ECHO, TRACK, WHERE

SET PEN

Defines part or all of the color map.
Syntax: SET PEN pen-number COLOR { h, s, l | numeric-array(*) }

SET PEN pen-number INTENSITY { r, g, b | numeric-array(*) }

where: h,s,l, r,g,b = numeric-expressions in the range zero to one.

Sample: SET PEN Num COLOR H,S,L
SET PEN Crayons COLOR Hslarray(*)
SET PEN Name INTENSITY Red,Green,Blue
SET PEN 1 INTENSITY 3/15,5/15,9/15
View Sample:    SET PEN.BAS    (also found in examples directory)
Description:

The SET PEN statement changes the color map values used for each available pen number. A
color may be specified in either RGB or HSL color space (see COLOR for an explanation about
RGB and HSL color spaces). Redefine multiple pens using the array specifier or redefine
individual pens by specifying one HSL or RGB color value. In either case, the pen-number
specifies the first entry in the color map to be defined. The pen-number is a numeric expression
which is rounded to an integer and should be in the range 0 to n-1, where n is the number of
colors.

The closest possible color will be used if the computer display cannot display the color you
select. When drawing an area in a certain color, it may be possible to produce the color more
accurately by specifying SET PEN followed by AREA PEN, rather than specifying AREA COLOR or
AREA INTENSITY.

Any pixels already drawn with the specified pen are changed to the new. All SET PEN
statements take effect immediately upon execution. The effects of all SET PEN statements last
until the next SET PEN statement of the same type, or until GINIT or QUIT. In cases where
dithering is used, changing the color map changes the colors available to the dithering process.

Array
If an array is used to set more than one pen, the array must be 2-dimensional and have 3
columns. The number of rows determines the number of pens set. For example,

1!RE-SAVE"WINCLR.BAS"
10 PLOTTER IS CRT,"INTERNAL";COLOR MAP
20 DATA .5,.5,.5 ! 8 = dark grey
30 DATA .75,.75,.75 ! 9 = light grey
40 DATA .5, 0, 0 ! 10 = dark red
50 DATA .5,.5, 0 ! 11 = dark yellow
60 DATA 0,.5, 0 ! 12 = dark green
70 DATA 0,.5,.5 ! 13 = dark cyan
80 DATA 0, 0,.5 ! 14 = dark blue
90 DATA .5, 0,.5 ! 15 = dark magenta
180 !
190 DIM Palette(8:15,1:3)

200 READ Palette(*)
210 SET PEN 8 INTENSITY Palette(*)
220 END

See Also:
AREA PEN, COLOR, PEN, PLOTTER IS

SET TIME

Sets the time of day clock.
Syntax: SET TIME seconds

Sample: SET TIME 43200
SET TIME Hrs*3600+Min*60
View Sample:    SET TIME.BAS    (also found in examples directory)
Description:

This command sets the time, but not the date. The seconds value is a numeric expression which
specifies the number of seconds past midnight. If it includes a fraction, the fraction is rounded to
match the clock hardware of the system you are using. The time can be specified to the nearest
hundredth of a second, although the PC clock is only accurate to 1/18th of a second.

NT Usage Notes
To set the time, you must have the "Change the system time" user right or belong to a group
that has this right. Usually the Administrators and Power Users groups have this right.

See Also:
DATE, DATE$, TIME, TIME$, SET TIMEDATE, TIMEDATE

SET TIMEDATE

Sets the date and time of the computer's clock.
Syntax: SET TIMEDATE time-value

Sample: SET TIMEDATE TIMEDATE+3600
SET TIMEDATE DATE("6 Nov 1959")
SET TIMEDATE DATE("17 Sep 1987")+TIME("10:00:00")
View Sample:    SET TIMEDATE.BAS    (also found in examples directory)
Description:

The time-value is a numeric expression and represents a time and date. Use the DATE and TIME
functions to convert a time expressed in the familiar formats to the time-value required by this
command. If the DATE function is used and the TIME function is not, the time is set to midnight
of that date. The date must be within the legal range supported by your operating system. The
time may include a fraction, in which case it is rounded to match the clock hardware of the
system you are using. The time can be specified to the nearest hundredth of a second, although
the PC clock is only accurate to 1/18th of a second. The legal range of dates is 1 Jan 1980 to 31
Dec 2099.

NT Usage Notes
To set the time, you must have the "Change the system time" user right or belong to a group
that has this right. Usually the Administrators and Power Users groups have this right.

See Also:
DATE, DATE$, TIME, TIME$, SET TIME, TIMEDATE

SGN

Returns the arithmetic sign of an expression.
Syntax: SGN (numeric-expression)

Sample: Xsgn=SGN(X)
Discriminate=SGN(B*B-4*A*C)
View Sample:    SGN.BAS    (also found in examples directory)
Description:

SGN returns a value of 1 if the numeric expression is positive, a value of -1 if it is negative and 0
if it is zero.

See Also:
ABS, FRACT, INT, MAXREAL, MINREAL, MOD, MODULO

SHIFT

Shifts a 16 bit binary value.
Syntax: SHIFT(numeric-expression, distance)

where: distance = numeric-expression rounded to an integer.

Sample: Check=SHIFT(Word1,Place)
K=SHIFT(100,-6)

View Sample:    SHIFT.BAS    (also found in examples directory)

Description:
The numeric expression is rounded to an integer. The resulting integer, in binary form, is shifted
the specified distance. The distance must be in the range ±15. If the distance is positive, bits
are moved to the right. Any bits moved out of the right-most bit (the least significant bit) are
discarded and zero bits are shifted into the left-most bit (the most significant bit). If the distance
is negative, bits are moved to the left. Any bits moved out of the left-most bit are discarded and
zero bits are shifted into the right-most bit.

For SHIFT(100,5) the number 100 is treated as a binary number and is shifted right five bits as
follows:

100 = 0000000001100100
SHIFT(100,5) = 0000000000000011

The result is returned as the decimal integer, 3.

See Also:
BINAND, BINCMP, BINEOR, BINEQV, BINIMP, BINIOR, BIT, ROTATE

SHOW

Defines the graphics unit-of-measure isotropically.
Syntax: SHOW left,right,bottom,top

Sample: SHOW -10,20,0,75
SHOW Left,Right,Bottom,Top
Description:

SHOW, like WINDOW, specifies the values to be displayed within the VIEWPORT or the hard-clip
boundaries. They can be any units of measure you wish to work with (inches, miles, years, etc.).

The SHOW and WINDOW statements differ in how they map data onto the viewport. SHOW
uses isotropic units (the X and Y units are of equal length); whereas WINDOW may use non-
isotropic units (the X and Y units are of different lengths).

A SHOW image can be "mirrored" about the X or Y axes by reversing the order of the limits for
each dimension by specifying the high value before the low value.

See Also:
CLIP, VIEWPORT, WINDOW

SIGNAL

Initiates a software interrupt.
Syntax: SIGNAL signal-number

Sample: SIGNAL Post
SIGNAL 15
Description:

The signal number may be a numeric expression which is rounded to an integer and should be in
the range of zero through fifteen. If an ON SIGNAL statement has defined a branch for this signal
number and the priority allows, the branch is executed.

See Also:
DISABLE, ENABLE, OFF SIGNAL, ON SIGNAL

SIN

Returns the sine of the argument.
Syntax: SIN(argument)

Sample: A=SIN(B)
Sine=SIN(Angle)
View Sample:    SIN.BAS    (also found in examples directory)
Description:

The range of the sine function is -1 to 1 inclusive. The numeric expression is treated as an angle
in the current trigonometric mode: RADians or DEGrees. The default trigonometric mode is
radians.

COMPLEX Arguments
SIN accepts either a COMPLEX or REAL argument and returns a value of the same type. For
COMPLEX arguments the angle must be specified in radians, regardless of the current
trigonometric mode. The real and imaginary parts of SIN(Z) are calculated (using real
arithmetic) as:

REAL(SIN(Z)) = SIN(REAL(Z))*COSH(IMAG(Z))
IMAG(SIN(Z)) = COS(REAL(Z))*SINH(IMAG(Z))

Notice that intermediate values generated during the calculation of the function can cause over
or underflow errors for very large or small values of Z.

See Also:
ACS, ASN, ATN, COS, TAN, ASNH, ACSH, ATNH, COSH, SINH, TANH, DEG, PI, RAD

SINH

Returns the hyperbolic sine of an expression.
Syntax: SINH(argument)

Sample: I=SINH(Z)
Hsine=SINH(Angle)
View Sample:    SINH.BAS    (also found in examples directory)
Description:

SINH accepts either a COMPLEX or REAL argument and returns a value of the same type. The
argument must be specified in radians, regardless of the current trigonometric mode. The real
and imaginary parts of SINH(Z) are calculated (using real arithmetic) as:

REAL(SINH(Z)) = SINH(REAL(Z))*COS(IMAG(Z))
IMAG(SINH(Z)) = COSH(REAL(Z))*SIN(IMAG(Z))

Notice that intermediate values generated during the calculation of the function can cause over
or underflow errors for very large or small values of Z.

See Also:
ACSH, ASNH, ATNH, COSH, TANH

SIZE

Returns the number of elements of an array dimension.
Syntax: SIZE(array-name[$],dimension)

where: dimension = integer between 1 and 6, £ RANK of array

Sample: SIZE(A$,X)
Total=SIZE(S$,1)
Upper=BASE(Z,2)+SIZE(Z,2)-1
View Sample:    SIZE.BAS    (also found in examples directory)
Description:

The SIZE is the difference between the upper and lower bounds plus one. The dimension
argument may be a numeric expression which is rounded to an integer and should be in the
range of one through six. If the array does not have as many dimensions as the dimension you
specify, an error will be generated.

See Also:
BASE, DIM, MAXLEN, RANK

SOUND

Produces tones on the computer speaker.
Syntax: SOUND numeric-array(*)

SOUND voice-number, frequency, volume, duration

where: voice-number, frequency, volume, duration = numeric-expressions

Sample: SOUND Voice,Freq,Vol,Dur
SOUND 2,440,10,0.70
SOUND Maryhadalittle(*)

Description:
This statement is not supported by HTBasic. Use BEEP

See Also:
BEEP

SPOLL

Performs a serial poll of a IEEE-488 device.
Syntax: SPOLL({@io-path | device-selector})

Sample: Stat=SPOLL(712)
SPOLL(@Dev)
Description:

The SPOLL function returns the integer serial poll response of the specified IEEE-488 device.
The computer must be the active controller and a primary device address must be specified.
One secondary address may be specified.

The IEEE-488 bus action is: ATN, UNL, MLA, TAD, SPE not-ATN, Read data byte, ATN, SPD, UNT.

See Also:
ABORT , CLEAR, LOCAL, PASS CONTROL, PPOLL, REMOTE, REQUEST, SEND, TRIGGER

SQRT

Returns the square root of an expression.
Syntax: SQRT(numeric-expression)

SQR(numeric-expression)

Sample: Root=SQRT(10*X)
PRINT "Square Root of";Y;"=";SQR(Y)
View Sample:    SQRT.BAS    (also found in examples directory)
Description:

The square root function may be entered as either SQRT or SQR.

COMPLEX Arguments
SQRT accepts either a COMPLEX or REAL argument and returns a value of the same type.
SQRT(Z) returns the principal value, defined (in real arithmetic) as:

REAL(SQRT(Z)) = SQRT((SQRT(REAL(Z)^2+IMAG(Z)^2)+REAL(Z))/2)

IMAG(SQRT(Z)) = SGN(Y)*
SQRT((SQRT(REAL(Z)^2+IMAG(Z)^2)-REAL(Z))/2)

which returns a real part = 0. The domain of SQRT includes all points in the complex plane.
However, intermediate values generated during the calculation of the function can also cause
over or underflow errors for very large or small values of Z.

See Also:
EXP, LOG, LGT

STATIC
Reserves storage for STATIC variables and arrays.

Syntax:
STATIC item [,item...]

Where:
item = numeric-name[(bounds)] [=initial numeric value] [BUFFER] |
string-name$[(bounds)]’[’length’]’ [=initial string value] [BUFFER]
 bounds = [lower-bound:]upper-bound [,bounds...]

Sample:
STATIC INTEGER Myint
STATIC REAL Myreal=5.7
STATIC INTEGER Intarray(100)
STATIC LONG Longarray(100)=10
STATIC A1$[100] BUFFER
STATIC A2$[100]=”This is a test”
STATIC A3$(100)[100]
STATIC A4$(100)[100]=”This is a test” BUFFER
STATIC INTEGER J1,J2=1,J3(100,200,400,500,600),LONG
 J4(100)=0 BUFFER

Description:
STATIC is a data condition. STATIC variables are persistent during a single run of an HTBasic program.
Typically, STATIC variables will only be used in SUB programs and/or FN functions because the MAIN context
is usually called only once.

STATIC variables can effectively take the place of COM variables as they are presently used in many cases. If
access to a COM variable is required in multiple SUBs and/or Functions (DEF FN) and/or the Main context,
then a STATIC variable is not appropriate. The scope of a STATIC variable is limited to the context in which it
is declared. In other words, a STATIC variable declared in a SUB program cannot be accessed anywhere
other than within that particular SUB program, however, it will retain the variable value between calls to that
subroutine.

Up to 6 bounds may be specified, the initial values are optional. Specifying an initial value for an array
initializes each individual element in all dimensions of the array to the initial value specified.

See Also:

COMPLEX, INTEGER, I/O PATH, LONG, REAL, STRING

STATUS

Returns control information from an interface or I/O path.
Syntax: STATUS source [,register] ;variable [,variable...]

STATUS(source, register)
STATUS @widgethandle;RETURN(return attribute list)

where: source = @io-path | interface-select-code
register = numeric-expression rounded to an integer
variable = numeric-name [(*)]

Sample: STATUS CRT;Col,Row
STATUS @Io,1;Type
IF STATUS(CRT,6) THEN ALPHA OFF
PRINT "Baud rate is ";STATUS(9,3)
STATUS 1801,19;Gains(*)
STATUS @Field1;RETURN (“VALUE”:Limit$)
STATUS @Input;RETURN (“VALUE”:Setpoint)
STATUS @Meter1;RETURN (“LOW LIMIT”:Low_lim,
“HIGH LIMIT”:High_lim)
View Sample:    STATUS.BAS    (also found in examples directory)

Description:
The I/O path or interface register contents are copied into the numeric variables, starting at the
specified register number and continuing until the variable list is exhausted. The default register
number is zero.

The range of legal registers and the meaning of values read from them differ for each interface.
The User's Guide describes the CONTROL and STATUS registers for each interface and for I/O
paths. Typically, registers return integer values and if you specify real values, they are rounded
to integers. However, some drivers return real values or even arrays, so the documentation
should be consulted.

The function form of STATUS complements the STATUS statement. It allows immediate access to a single
register without need for a temporary variable or separate STATUS statement. However, the STATUS function
can only return one value at a time, while the STATUS statement can return multiple registers in a single
statement.

Each widget has a variety of attributes that control its appearance and behavior. The STATUS statement is
used to query the value of a widget attribute. The widget must have been created previously using an ASSIGN
statement. Attributes are either scalar (may contain a single value) or vector (may be assigned an array of
values) and have values of either numeric or string type.

A shorthand method is available that permits you to query values of several attributes without naming them
individually on the STATUS statement. (Only scalar attributes may be queried with this shorthand method.)

· You store all the attributes in a string array and supply an array
to receive attribute values.

· Then, when you supply the array names to the STATUS statement, the value of each attribute named in
each element of the attribute array will be returned in the corresponding element of
the value array.

· Elements of the attribute array that contain nothing, or nothing but blanks, will be ignored and the
corresponding element of the value array will remain unchanged.

Since widget handles are equivalent to I/O path names, you may use the STATUS statement to query the
value of registers, which provide information about the widget. For widgets, Status Register 0 and Status
Register 1 are defined.

Status Register 0 is defined for all I/O paths. For example:

STATUS @Io_path,0;Numeric_var

For widgets, this returns a 5 to numeric_var (5 means @Io_path is a widget). Status Register 1 is defined for
all I/O paths assigned to a device. For example:

STATUS @Pb_12,1;Numeric_var

For widgets, this will return a 6 to numeric_var (6 means @Pb_12 is a device associated with the internal
graphics CRT).

Any status register greater than 1 will cause Error 155 - Bad interface register number. Using ENTER,
OUTPUT, TRANSFER, etc., (all other commands associated with I/O paths assigned to devices) generates
Error 170 - I/O operation not allowed.

Porting to HP BASIC:
STATUS @Iopath,2 always returns a 4. STATUS @File,3 returns the current length, not the
CREATE length. This is because files are extendible under DOS and Windows.

The STATUS() function is an addition to HTBasic. Any STATUS or CONTROL registers greater
than 99 are also additions. As in HP BASIC, STATUS register 0 of interface cards contains the
card ID. Interface cards that are available on a PC, but not on an HP BASIC Workstation are
identified with ID numbers greater than or equal to 300. These new features should not be used
in programs that must be ported back to HP BASIC.

See Also:
CONTROL, READIO, WRITEIO

STOP

Terminates program execution.
Syntax: STOP

Sample: STOP
IF Finish THEN STOP
View Sample:    STOP.BAS    (also found in examples directory)
Description:

When STOP is encountered, the program quits execution, I/O paths not in COM are closed and
all variables are discarded. CONT cannot be used after STOP. To restart the program you must
use the RUN statement. Use PAUSE to temporarily halt program execution and CONT to resume
program execution.

See Also:
CONT, PAUSE, RUN

STORE

Stores the BASIC program in a file.
Syntax: STORE file-specifier

Sample: STORE Vol$&Name$
STORE "Fullprg"
View Sample:    STORE.BAS    (also found in examples directory)
Description:

A new file of type PROG is created and the BASIC program currently in memory is written to the
file in binary form. If the file already exists, an error is reported. Use RE-STORE to update an
existing file. Use LOAD to re-enter the program into the computer.

Porting to HP BASIC:
HP BASIC PROG files and HTBasic PROG files are not compatible. To move programs between the
two environments, use ASCII program files.

See Also:
GET, LIST, LOAD, RE-SAVE, RE-STORE, SAVE, STORE KEY

STORE KEY

Stores the softkey definitions in a file.
Syntax: STORE KEY file-specifier

Sample: STORE KEY Path$&"MACROS.HTB"
STORE KEY "/usr/htb/keys"
View Sample:    STORE KEY.BAS    (also found in examples directory)
Description:

A new file of type BDAT is created with the name specified. If the file already exists, an error is
reported. Use RE-STORE KEY to update an existing file.

Using FORMAT OFF, the definition for any defined softkey is written to the file by outputting two
items. The first item is an integer, specifying the key number. The second item is a string, giving
the key definition. Use LOAD KEY to re-enter the softkey macros into the computer.

FORMAT MSB FIRST is used to write the file. This makes key definitions compatible with HP
Workstations and can easily be used with HP BASIC.

See Also:
EDIT KEY, LIST KEY, LOAD KEY, READ KEY, RE-STORE KEY, SCRATCH KEY, SET KEY

STORE SYSTEM

Stores BASIC and loaded BINs into a file.
Syntax: STORE SYSTEM file-specifier

Sample: STORE SYSTEM "Full"

Description:
In HP BASIC, this statement stores a copy of the operating system with all loaded BINs already
linked in. Under HTBasic, this statement is not supported. Use the HTBasic AUTOST file to load
HTBasic device drivers.

SUB

Defines a subprogram and specifies formal parameters.
Syntax: SUB subprogram-name [(parameter-list)]

statements
[SUBEXIT]
statements
SUBEND

where: statements = zero, one or more program statements
including additional SUBEXIT statements
parameter-list = [param [,param...]] [,] [OPTIONAL param [,param...]]
[,] = the optional comma is only needed when items
occur on both sides of it
param = [REAL|INTEGER|COMPLEX] numeric-name [(*)[BUFFER]] |
string-name$ [(*) | BUFFER] | @io-path

Sample: SUB Unit1
SUB Link(String$)
SUB Procm(INTEGER Array(*),OPTIONAL @Lpr,Name$)
SUB Plot(Buff$ BUFFER,Coor)
View Sample:    SUB.BAS    (also found in examples directory)
Description:

SUB subprograms must follow the MAIN program's END statement. The first line must be a SUB
statement and the last line a SUBEND statement. The lines between SUB and SUBEND
statements define a subprogram which can be called by other parts of the program with the
CALL statement.

Unless the OPTIONAL keyword is specified, the number of CALL arguments must match the
number of SUB parameters; each argument must be of the same type (numeric or string) as the
corresponding parameter. Any parameters to the right of the OPTIONAL keyword are optional in
the CALL statement. NPAR returns the number of arguments in the current CALL statement. All
variables defined in a subprogram that are not COM variables are local to the subprogram. Upon
each entry to the subprogram they are set to zero.

A CALL to a subprogram, transfers control to the first statement of that subprogram and starts
executing from there. Execution proceeds normally until either a SUBEND or SUBEXIT
statement is executed, at which point control returns to the statement after the CALL. The
SUBEXIT statement allows a return from the subprogram at points other than the SUBEND.
Multiple SUBEXITs are allowed in a subprogram. SUBEXIT may appear in an IF statement,
SUBEND can not.

See Also:
CALL, DEF FN, FN

SUM

Returns the sum of all elements in a numeric array.
Syntax: SUM(numeric-array)

Sample: S1=SUM(A2)
PRINT SUM(Array)
View Sample:    SUM.BAS    (also found in examples directory)
Description:

If the array has type REAL, then SUM returns a REAL value. If the array has type INTEGER, then
SUM returns an INTEGER value and the possibility of INTEGER overflow exists during the
summing of an array.

See Also:
CSUM, RSUM

SUSPEND INTERACTIVE

Deactivates program control keys.
Syntax: SUSPEND INTERACTIVE [,RESET]

Sample: SUSPEND INTERACTIVE,RESET
View Sample:    SUSPEND INTERACTIVE.BAS    (also found in examples directory)
Description:

The normal functions of the program control keys CLR I/O, ENTER, PAUSE, STEP and STOP, are
disabled. The RESET key may also be disabled by specifying the optional RESET keyword. The
keys are only disabled while the program is running.

RESUME INTERACTIVE, END, GET, LOAD, RUN, SCRATCH or STOP will re-enable the program
control keys as well as the RESET key.

See Also:
RESUME INTERACTIVE

SYMBOL

Allows the user to define label symbols.
Syntax: SYMBOL numeric-array(*) [,FILL] [,EDGE]

Sample: SYMBOL Code(*)
SYMBOL Hieroglyph(*),FILL,EDGE
View Sample:    SYMBOL.BAS    (also found in examples directory)
Description:

SYMBOL uses a two-dimensional two-column or three-column array to plot a User-defined
symbol. They are created with moves and draws in the LABEL font coordinate system, an area
nine units wide and fifteen units high. Unlike LABEL, SYMBOL allows coordinates outside the
character cell.

The symbol is drawn using the current pen control and line type and will be clipped at the clip
boundary. A move is always done to the first point and the current pen position is left at the last
X,Y position specified in the array and is not updated to the next character position. The CSIZE,
LDIR and LORG statements affect the SYMBOL statement.

See PLOT for an explanation of FILL, EDGE, and array operations supported by SYMBOL. See
the User's Guide for more information about the SYMBOL coordinate system.

Porting to HP BASIC:
LORG 5 moves the symbol origin from (0,0) to (5,8). In HP BASIC it moves the origin to (4.5,7.5).

See Also:
CSIZE, LABEL, LDIR, LORG, PEN, PLOT, SET CHR

SYSBOOT

Reboots the computer.
Syntax: SYSBOOT

Sample: SYSBOOT

Description:
HTBasic does not support SYSBOOT, which under HP BASIC reboots the computer. Since
HTBasic runs as a guest of an operating system, it is considered inappropriate to reboot the
computer. Under some operating systems, rebooting the computer inappropriately can cause
loss of data. To terminate HTBasic, use the QUIT ALL statement.

See Also:
EXECUTE, QUIT ALL

SYSTEM KEYS

Displays the System Softkeys Menu.
Syntax: SYSTEM KEYS

Sample: SYSTEM KEYS
IF Menu THEN SYSTEM KEYS
View Sample:    SYSTEM KEYS.BAS    (also found in examples directory)
Description:

This statement has no effect if KBD CMODE is on. This statement is equivalent to CONTROL
KBD,2;0.

See Also:
KBD CMODE, KEY LABELS, KEY LABELS PEN, USER KEYS

SYSTEM PRIORITY

Sets the system priority to a specified level.
Syntax: SYSTEM PRIORITY priority

Sample: SYSTEM PRIORITY Degree
SYSTEM PRIORITY 2
View Sample:    SYSTEM PRIORITY.BAS    (also found in examples directory)
Description:

The priority may be a numeric expression and is rounded to an integer in the range of zero (the
lowest priority) through fifteen (the highest priority). The default priority is zero. ON END, ON
ERROR, and ON TIMEOUT have higher priorities than the highest user SYSTEM PRIORITY.

Any events defined at an equal or lower priority will be logged and not executed until the system
priority is lowered.

If the system priority is changed within a subprogram, it will be restored when the subprogram
ends.

See Also:
ON, SYSTEM$("SYSTEM PRIORITY")

SYSTEM$

Returns system status and configuration information.
Syntax: SYSTEM$(information)

where: information = a string-expression containing one of the strings from the table below.

Sample: M=VAL(SYSTEM$("AVAILABLE MEMORY"))
PRINT "Version "&SYSTEM$("VERSION:HTBasic")
View Sample:    SYSTEM$.BAS    (also found in examples directory)
Description:

SYSTEM$ returns system information in a string. The information returned depends on which of
the following strings is specified in the SYSTEM$ command.

Porting to HP BASIC.    Minor differences in some SYSTEM$ responses exist where
appropriate to reflect hardware or operating system differences.

AVAILABLE MEMORY
Returns the available memory in bytes. In most cases the FRE function is easier to use. The
amount of available memory when HTBasic is started can be specified with a command line
switch. See FRE.

CRT ID
Returns a twelve character CRT identification string. A space in a position indicates that
capability is not present.

Bytes Meaning 
1 always "6".
2 always ":".
3-5 CRT width, for example " 80".
6 "H" if at least one display enhancement is supported,

 i.e. inverse, blink, underline. Not all CRTs support
all enhancements.

7 "C" if colors are available in at least one screen mode.
8 "G" if graphics are available.
9 "B" if the display is bit-mapped.
10-12 Maximum value for ALPHA PEN.

DISP LINE
The present content of the display line is returned. This allows you to write subroutines that
temporarily save off the display line content, DISP something else and then restore the display
line.

SYSTEM$("DISP LINE") is a new HTBasic function that is not available in HP BASIC. It should not
be used in programs that must be ported back to HP BASIC.

DUMP DEVICE IS
Returns a string specifying the current DUMP DEVICE.

GRAPHICS INPUT IS
Returns a string specifying the current GRAPHICS INPUT IS    device.

GFONT IS
Returns a string specifying the current GFONT IS font.

KBD LINE
Returns a string whose content is the same as the current keyboard input line.

KEYBOARD LANGUAGE
Returns a string identifying foreign language keyboards. On some computers, it is not possible
for HTBasic to know the keyboard type. On these systems "ASCII" is returned regardless of the
actual keyboard.

LEXICAL ORDER IS
Returns the current language set by the LEXICAL ORDER IS command. "ASCII" is the default.

MASS MEMORY
Returns a sixteen character string identifying types and numbers of mass storage devices
attached. On some computers, this information is not available to HTBasic. On these systems,
"0" is returned for each device type. If the number of devices of any type exceeds nine, "*" is
returned in that byte position.

Bytes Meaning 
1 number of internal disk drives.
2-4 not assigned.
5 number of initialized EPROM cards (always 0).
6 number of bubble memory cards (always 0).
7-16 not assigned.

MASS STORAGE IS or MSI
Returns the current device and directory. MSI is an abbreviation for MASS STORAGE IS and
returns the same information.

PLOTTER IS
Returns a string specifying the current PLOTTER IS device.

PRINTALL IS
Returns a string specifying the current PRINTALL IS device.

PRINTER IS
Returns a string specifying the current PRINTER IS device.

PROCESS ID
Under multitasking operating systems such as NT, this call returns the process ID of HTBasic.
Under single-tasking operating systems such as DOS, this call always returns "0".

SERIAL NUMBER
Returns a string containing the serial number. The number is unique for that class of hardware.
On a PC, the serial number is an eleven character string read from the ID Module connected to
the parallel port. If the serial number can not be found, the string "11111111111" is returned.

SYSTEM ID
A string identifying the hardware system is returned. The DOS Version of HTBasic uses the IBM
PC System ID byte located at F000:FFFE to determine what seven character string should be
returned. The following table gives the responses generated:

ID Byte Computer SYSTEM$("SYSTEM ID")
F8 PS/2 Model 80 "PS/2 80"
F9 PC Convertible "PC Conv"
FA PS/2 Model 30 "PS/2 30"
FB PC/XT "PC/XT    "
FC PC/AT, PS/2 Models 50/60 "PC/AT    "
FD PC Jr "PCjr      "
FE PC/XT "PC/XT    "
FF PC "PC          "
other Unknown "PC          "

Under Windows and NT, three numbers are returned, separated by commas. The first number is
the processor type, the second is the number of processors and the third is the machine OEM ID,
if it has one.

SYSTEM PRIORITY
Returns a string containing the current system priority. Use VAL(SYSTEM$("SYSTEM PRIORITY"))
to retrieve the priority as a numeric value.

TIMEZONE IS
Under operating systems like Windows, which store the local time in the real time clock, this call
always returns "0". Under operating systems like UNIX, which store Greenwich Mean Time in the
real time clock, this call returns the number of seconds difference between your local time and
GMT. Negative values represent timezones west of Greenwich.

TRIG MODE
Returns the current trigonometric mode, "DEG" for degrees and "RAD" for radians.

VERSION:BASIC
Returns a string containing the HP BASIC version number emulated, i.e., "5.1", "6.2", etc.

VERSION:HTB
Returns a string containing HTBasic version information. This is the same information printed on
the first line of the CRT when HTBasic starts.

This function can be useful for programs that run on both HP BASIC and HTBasic systems,
enabling them to determine which system they are currently running on. The following example
sets a variable according to the system running the program:

10 SUB Which_system
20 COM /Which_system/Htbasic,Hpbasic
30 IF SYSTEM$("VERSION:HTB")="0" THEN
40 Hpbasic=1
50 ELSE
60 Htbasic=1
70 END IF
80 SUBEND

VERSION:OS
Returns a string containing operating system revision information. The string is of the form "x.yy
Windows" and under NT it is "x.yy Windows NT". X is the major revision and yy is the minor
revision.

VERSION:bin-name
Returns a string containing the version number of the binary named. Replace bin-name with the
name of the binary of interest. LIST BIN can be used to see the version numbers for all loaded
binaries.

WILDCARDS
Returns "OFF:" if wildcarding is turned off. This function always returns "ON:". See WILDCARDS.

WINDOW SYSTEM
Returns "Console" under most versions of HTBasic. Under some versions it returns the name of
the current screen driver. See PLOTTER IS for an explanation of screen drivers.

See Also:
DEG, DUMP DEVICE IS, GRAPHICS INPUT IS, PLOTTER IS, LEXICAL ORDER IS, MSI, PRINTALL IS,
PRINTER IS, RAD, SYSTEM PRIORITY

TAN

Returns the tangent of an expression.
Syntax: TAN(argument)

Sample: A=TAN(B)
Tangent=TAN(X)
PRINT "Tangent of";Angle;"=";TAN(Angle)
View Sample:    TAN.BAS    (also found in examples directory)
Description:

The tangent of an angle is the sine of the angle divided by the cosine of the angle. The numeric
expression is treated as an angle in the current trigonometric mode: RADians or DEGrees. The
default units are radians. TAN is defined for all real numbers except ±PI/2 (±90 degrees) and
other odd multiples of PI/2 (90 degrees).

COMPLEX Arguments
TAN accepts either a COMPLEX or REAL argument and returns a value of the same type. For
COMPLEX arguments the angle must be specified in radians, regardless of the current
trigonometric mode. The real and imaginary parts of TAN(Z) are calculated (using real
arithmetic) as:

REAL(TAN(Z)) = SIN(2*REAL(Z))/D
IMAG(TAN(Z)) = SINH(2*IMAG(Z))/D

where:

D = COS(2*REAL(Z))+COSH(2*IMAG(Z))

The domain of TANH includes all points in the complex plane except CMPLX(PI/2,0) and other
odd multiples of PI/2. Also, intermediate values generated during the calculation of the function
can also cause over or underflow errors for very large or small values of Z.

See Also:
ACS, ASN, ATN, COS, SIN, ASNH, ACSH, ATNH, COSH, SINH, TANH, DEG, PI, RAD

TANH

Returns the hyperbolic tangent of an expression.
Syntax: TANH(numeric-expression)

Sample: A=TANH(B)
Htangent=TANH(X)
PRINT "Hyperbolic Tangent of";Angle;"=";TANH(Angle)
View Sample:    TANH.BAS    (also found in examples directory)
Description:

TANH accepts either a COMPLEX or REAL argument and returns a value of the same type. The
argument must be specified in radians, regardless of the current trigonometric mode. The real
and imaginary parts of TANH(Z) are calculated (using real arithmetic) as

REAL(TANH(Z)) = SINH(2*REAL(Z))/D
IMAG(TANH(Z)) = SIN(2*IMAG(Z))/D

where:

D = COSH(2*REAL(Z))+COS(2*IMAG(Z))

The domain of TANH includes all points except CMPLX(0,PI/2+PI*K), where K can be any integer.
However, intermediate values generated during the calculation of the function can cause over or
underflow errors for very large or small values of Z.

See Also:
ACSH, ASNH, ATNH, COSH, SINH

TIME

Converts a time-of-day string to seconds after midnight.
Syntax: TIME(string-expression)

Sample: Seconds=TIME(Clock$)
SET TIME TIME("3:56:30")
ON TIME TIME("17:00") RECOVER Athome
View Sample:    TIME.BAS    (also found in examples directory)
Description:

A string expression in the form HH:MM[:SS] is converted into an equivalent number of seconds
past midnight in the range 0 through 86,399. Leading blanks and non-numeric characters are
ignored.

See Also:
DATE, DATE$, TIME$, SET TIME, SET TIMEDATE, TIMEDATE

TIME$
 Returns a formatted time of day string.

Syntax: TIME$(numeric-expression)

Sample: PRINT TIME$(TIMEDATE)
Later$=TIME$(Sec+3600)
View Sample:    TIME$.BAS    (also found in examples directory)
Description:

TIME$ takes a numeric-expression representing seconds past midnight and forms a time of day
string with the format HH:MM:SS. If TIMEDATE is used as the argument, then TIME$ returns the
current time of day.

See Also:
DATE, DATE$, TIME, SET TIME, SET TIMEDATE, TIMEDATE

TIMEDATE

Returns the current time and date from the clock.
Syntax: TIMEDATE

Sample: PRINT "The operation took ";TIMEDATE-Start;" seconds"
DISP TIME$(TIMEDATE),DATE$(TIMEDATE)
DISP "Seconds since midnight = ";TIMEDATE MOD 86400
View Sample:    TIMEDATE.BAS    (also found in examples directory)
Description:

A real number, representing the present time and date is returned. To convert the number to the
familiar date and time formats, use TIME$ and DATE$. The value returned is loosely based on
the Julian Period, which began in 4713 B.C. To return the current Julian Day, use the following
function. Remember that the Julian Day changes at noon.

10 DEF FNJd_now
20 RETURN ((TIMEDATE-4300) DIV 86400)-1
30 FNEND

See Also:
DATE, DATE$, TIME, TIME$, SET TIME, SET TIMEDATE

TIMEZONE IS

Corrects between GMT and local time for HP BASIC/WS.
Syntax: TIMEZONE IS seconds

where: seconds = numeric-expression

Sample: IF Utah THEN TIMEZONE IS -7*3600

Description:
HTBasic does not require this statement and will return an error if an attempt is made to execute
it. The editor will allow it to be entered and the syntax checker will check it for correctness to
allow you to develop programs and run them under HP BASIC. HP BASIC requires this statement
for two reasons: 1) HP BASIC/UX keeps a time clock independent of the UNIX time and 2) it is
possible to boot HP BASIC/WS on a computer whose real-time clock is set to Greenwich Mean
Time (GMT).

SYSTEM$("TIMEZONE IS") returns the value currently in effect. The offset specifies the difference
in seconds between GMT and local time. Negative values specify timezones west of GMT,
positive values specify timezones east of GMT. The following table gives offsets in hours for
standard time. Multiply the hours given by 3600 before comparing to values returned by
SYSTEM$("TIMEZONE IS").

Timezone Hours
Eastern European +2
Middle European +1
Western European 0
Atlantic -4
Eastern -5
Central -6
Mountain -7
Pacific -8
Japan +9
Singapore +8

See Also:
DATE, DATE$, TIME, TIME$, SET TIME, SET TIMEDATE, TIMEDATE

TRACE

Controls the display of information about a running program.
Syntax: TRACE ALL [start-line [,end-line]]

TRACE OFF
TRACE PAUSE [line]

where: line = line-number | line-label

Sample: TRACE ALL 1000,1200
TRACE OFF
TRACE PAUSE 250
View Sample:    TRACE.BAS    (also found in examples directory)
Description:

TRACE ALL traces program flow and variable assignments. Either the entire program or just a
range of program lines may be traced. The trace output is sent to the message line and displays
the program line numbers and any modified simple numeric or string variable and its new value.
If a full array is modified the entire array is not displayed. If print-all mode is on, then the trace
output is also sent to the PRINTALL IS device.

TRACE OFF turns off all tracing functions.

TRACE PAUSE will PAUSE program execution before the specified line and will display the next
program line to be executed. If no line is specified, the program pauses before the next line is
executed and the current TRACE PAUSE line is deactivated. Tracing slows program execution.

See Also:
CAUSE ERROR, CLEAR ERROR, PRINTALL IS, XREF

TRACK

Enables or disables tracking of the locator position on the display device.
Syntax: TRACK device-selector IS {ON | OFF}

Sample: TRACK Plot IS ON
TRACK 702 IS OFF
View Sample:    TRACK.BAS    (also found in examples directory)
Description:

ON enables tracking of the current locator on the PLOTTER IS device during DIGITIZE
statements. Tracking stops when a point is digitized and the echo is left at the location of the
digitized point. When the display device is a plotter, the pen position tracks the locator. When
the CRT is the display device, a crosshair tracks the locator. OFF disables tracking of the current
locator. To turn off the crosshair, use SET ECHO with coordinates that are off screen

The current locator is defined by a GRAPHICS INPUT IS statement and the current display device
is defined by a PLOTTER IS statement. If the device-specifier is not the same as the current
PLOTTER IS device, an error is generated.

See Also:
DIGITIZE, GRAPHICS INPUT IS, PLOTTER IS, READ LOCATOR, SET ECHO, SET LOCATOR, WHERE

TRANSFER

Performs an unformatted I/O transfer.
Syntax: TRANSFER @source-io-path TO @dest-io-path [; parameters]

where: parameters = [eot-term-list] [,] [EOR(eor-term-list)] [,] [type]
[,] = the optional comma is only needed when items
occur on both sides of it.
eot-term-list = eot-term [,eot-term...]
eot-term = COUNT bytes |
DELIM character |
END |
RECORDS number
eor-term-list = eor-term [,eor-term...]
eor-term = COUNT bytes | DELIM character | END
type = { CONT | WAIT } [, type]
bytes, number = numeric-expressions, rounded to integers
character = string-expression, zero or one character

Sample: TRANSFER @Device TO @Buffer
TRANSFER @Buff TO @Logger;CONT
TRANSFER @Rs232 TO @Buff;DELIM CHR$(13)
TRANSFER @Path TO @Buff;RECORDS 16,EOR(END)
View Sample:    TRANSFER.BAS    (also found in examples directory)
Description:

The TRANSFER statement sets up unformatted data transfers between memory and a device.
The data transfer normally occurs in the "background." That is, the BASIC program continues to
run in the "foreground" simultaneously with the background transfer. Optionally, the TRANSFER

statement can wait until the transfer is complete before continuing.

TRANSFER is not supported on all interfaces. The interface hardware must have the necessary
circuitry and the device driver must have the proper software support.

Buffers
The transfer operation must be between a buffer and a device. A buffer must be declared as the
source for an outbound transfer or as the destination of an inbound transfer. One buffer can
simultaneously be used for an outbound transfer and an inbound transfer. A transfer directly
between two devices is not supported.

Buffers may be unnamed or named. An unnamed buffer is created, assigned an I/O path and
given its size by the ASSIGN statement. A named buffer is a previously declared REAL, INTEGER
or COMPLEX array or a string scalar (declared in a COM, DIM, INTEGER, REAL or COMPLEX
statement) which has been ASSIGNed to an I/O path. Unnamed buffers are usually preferred
because the size can be as large as available memory and no side-effects are possible by
accessing the buffer through its variable name.

Buffers are circular; each buffer has a fill and empty pointer as well as a count. The fill pointer is
used by an inbound transfer to identify the next location for data to be stored (inserted). The
empty pointer is used by an outbound transfer and points to the next location for data to be
output (removed). A value of one for either pointer means the first byte of the buffer. When the
fill and empty pointers have the same value, the count can be examined to determine whether
the buffer is empty or full.

The I/O path assigned to the buffer is called the buffer-I/O path. The I/O path assigned to the
device is called the non-buffer-I/O path. The buffer should be accessed only with the buffer-I/O
path. The count, fill and empty pointers can be examined using STATUS on the buffer-I/O path.
OUTPUT @buf or an inbound transfer are used to place data into a buffer. ENTER @buf or an
outbound transfer are used to read and remove data from a buffer. The variable name of a
named buffer should generally not be used to access the data in the buffer since the data in the
buffer is unformatted and may even have the wrong byte order.

Transfer Type
The type of the transfer can be specified as CONT, WAIT, or left unspecified.

If WAIT is specified, the transfer executes in foreground mode. Program execution does not
proceed beyond the TRANSFER statement until the transfer terminates. If an error occurs, it is
reported with the line number of the TRANSFER statement. If WAIT is not specified, execution
continues past the TRANSFERstatement and the transfer takes place in the background. Then if
an error occurs, the error is not reported until the non-buffer-I/O path is referenced. The error
line reported is not that of the TRANSFER, but of the statement where the non-buffer-I/O path
was referenced.

If CONT is specified, TRANSFER executes continuously. For an inbound transfer, execution
pauses when the buffer is full and continues when space is available in the buffer. For an
outbound transfer, execution pauses when the buffer is empty and continues when the buffer
has data available. If CONT is not specified, the end-of-transfer occurs when an outbound
transfer empties the buffer or an in-bound transfer fills the buffer. Or if a termination method
has been specified as explained below, the transfer terminates when the condition occurs.

Both WAIT and CONT can be specified together if a transfer is already active for the buffer in
the opposite direction. The transfer will be continuous, but will run in the foreground.

If neither WAIT nor CONT is specified, the transfer occurs in the background. The end-of-
transfer occurs when an outbound transfer empties the buffer or an in-bound transfer fills the
buffer. Or if a termination method has been specified as explained below, the transfer
terminates when the condition occurs.

Transfer Termination
An eot-term-list can be used to specify a list of conditions which cause the transfer to end. The
following end-of-transfer termination conditions, eot-term, can be used:

If COUNT is specified, the transfer terminates after the specified number of bytes has been
transferred.

If DELIM is specified for an inbound transfer, then the transfer is terminated after the specified
character is detected. DELIM is not allowed with outbound transfers. If the delimiter string is
zero length, delimiter checking is disabled. DELIM prevents DMA from being used; interrupts will
be used instead.

If END is specified for an inbound transfer, the transfer terminates when the device dependent
signal is received. On the IEEE-488 interface, END is the EOI signal. When an inbound transfer is
terminated in this way, bit 3 of register 10 is set. For an outbound transfer, END does not
specify a termination condition, but rather specifies that the device dependent signal (EOI) is
sent with the last byte sent.

If RECORDS is specified, the transfer terminates when the specified number of records has been
transferred. An eor-term-list must be specified, defining what will be considered a record for the
purpose of this particular transfer. For inbound transfers the legal end-of-record termination
conditions, eor-term, are COUNT, DELIM and END or some combination of these three. For
outbound transfers only COUNT can be used to define a record, although END can be used to
specify that the device dependent signal (EOI) is sent with the last byte of each record.

The ON EOR and ON EOT statements can be used to generate an event when an end-of-record
or end-of-transfer occurs. The WAIT FOR EOR and WAIT FOR EOT statements can be used to stop
further statement execution until an end-of-record or end-of-transfer occurs.

To terminate a CONT, continuous mode, outbound transfer without leaving data in the buffer,
use the following sequence of statements:

CONTROL @Buff,8;0
WAIT FOR EOT @Non_buff

Hanging and Premature Termination
HTBasic will not enter a stopped state until all transfers are completed. Likewise, HTBasic will
not exit a program context until transfers started in that context are finished. The following
statements also cause the computer to "hang" until all transfers complete: GET, LOAD, RETURN,
STOP, SUBEND, SUBEXIT or modifying a program line.

The ABORTIO statement can be used to prematurely terminate a transfer and free the computer.
The RESET key will also terminate any active transfers, but ABORTIO is preferred.

Outbound TRANSFER
An outbound transfer has the form:

TRANSFER @Buff TO @Non_buff

If another outbound TRANSFER statement is executed while an outbound TRANSFER is
occurring, HTBasic waits for completion of the first before starting the second. Any EOT/EOR
events caused by the first transfer will then be logged and may be serviced before the next
program line.

Inbound TRANSFER
An inbound transfer has the form:

TRANSFER @Non_buff TO @Buff

If another inbound TRANSFER statement is executed while an inbound TRANSFER is occurring,
HTBasic waits for completion of the first before starting the second. Any EOT/EOR events caused
by the first transfer will then be logged and may be serviced before the next program line.

See Also:
ABORTIO, ASSIGN, ENTER, ON EOR, ON EOT, OUTPUT, RESET, STATUS, WAIT

TRIGGER

Sends a trigger message to all or selected devices on the IEEE-488.
Syntax: TRIGGER {@io-path | device-selector}

Sample: TRIGGER @Gpib
TRIGGER 712
TRIGGER Dev
Description:

TRIGGER sends a trigger message to a specified device or to all LISTEN addressed devices on
the IEEE-488 bus. The computer must be the active controller. If an I/O path is specified, it must
be assigned to the IEEE-488 interface or to one or more IEEE-488 devices.

If primary device addresses are specified bus action is: ATN, UNL, LAG, GET. If only an interface
select code is specified the bus action is: ATN, GET.

See Also:
ABORT , CLEAR, INTR, LOCAL, PASS CONTROL, PPOLL, REMOTE, REQUEST, SEND, SPOLL

TRIM$

Removes leading and trailing spaces from a string.
Syntax: TRIM$(string-expression)

Sample: A$=TRIM$(B$)
Heading$=TRIM$(" Title ")
View Sample:    TRIM$.BAS    (also found in examples directory)
Description:

The TRIM$ string function removes leading and trailing spaces from a string. The embedded
spaces are not affected.

See Also:
CHR$, LWC$, NUM, REV$, POS, RPT$, UPC$, VAL, VAL$

UNLOCK

Removes exclusive access protection from a LOCKed file.
Syntax: UNLOCK @io-path

where: io-path = name assigned to a file

Sample: UNLOCK @Proprietary
IF Unsecure THEN UNLOCK @File
View Sample:    UNLOCK.BAS    (also found in examples directory)
Description:

File locking capabilities depend on the operating system HTBasic is running on. If the operating
system does not support it, this command is ignored. An ASSIGN @PathTO * will UNLOCK and
then close the file.

A file can have multiple locks on it. The file remains locked until a corresponding number of
UNLOCKstatements have been executed. LOCKing a file should be a temporary action of short
duration so that fair access to the file is provided to all users.

Under DOS or Windows, SHARE may need to be loaded in order to share, lock and unlock files.
Consult the manufacturer's documentation for your system. If SHARE is necessary, but not
currently installed, the LOCK will fail with an error number 1.

See Also:
ASSIGN, LOCK

UPC$

Converts characters in a string to uppercase characters.
Syntax: UPC$(string-expression)

Sample: A$=UPC$(B$)
Capital$=UPC$(Names$)
View Sample:    UPC$.BAS    (also found in examples directory)
Description:

LEXICAL ORDER IS determines the lowercase to uppercase correspondence. If the lexical order is
a user-defined table and the optional upper and lowercase conversion rules were not specified,
the upper to lowercase correspondence is determined by the standard lexical order.

See Also:
CHR$, LWC$, NUM, POS, REV$, RPT$, TRIM$, VAL, VAL$

USER KEYS

Displays the specified User Softkey Menu.
Syntax: USER menu-number KEYS

Sample: USER Menu KEYS
IF Two THEN USER 2 KEYS
View Sample:    USER KEYS.BAS    (also found in examples directory)
Description:

The menu number may be a numeric expression and is rounded to an integer. It should be in the
range one to three.

See Also:
KBD CMODE, KEY LABELS, KEY LABELS PEN, SYSTEM KEYS

VAL

Converts a string into a numeric value.
Syntax: VAL(string-expression)

Sample: I=VAL(Response$)
IF VAL(SYSTEM$("VERSION:OS"))<3 THEN CALL Alternate
View Sample:    VAL.BAS    (also found in examples directory)
Description:

There must be a digit, a plus or minus sign or a decimal point as the first non-blank character of
the string. The remaining characters are scanned until a non-numeric character is seen. If an E is
present the characters must form a valid number in scientific notation format. VAL is the
opposite of the VAL$ function.

See Also:
DVAL, DVAL$, IVAL, IVAL$, NUM, POS, VAL$

VAL$

Converts a number into its string representation.
Syntax: VAL$(numeric-expression)

Sample: A$=VAL$(12345)
CREATE "DATA."&VAL$(Version)
View Sample:    VAL$.BAS    (also found in examples directory)
Description:

The returned string is in default print format, except that no trailing blanks are attached to the
string and no leading blank is attached to positive numbers. VAL$ is the opposite of the VAL
function.

See Also:
DVAL, DVAL$, IVAL, IVAL$, NUM, POS, VAL

VIEWPORT

Defines the area of the graphic device used for output.
Syntax: VIEWPORT left,right,bottom,top

Sample: VIEWPORT Left,Right,Bottom,Top
VIEWPORT 0,75,10,30
View Sample:    VIEWPORT.BAS    (also found in examples directory)
Description:

VIEWPORT selects the area of the screen (or device) to be used for graphics output and sets
the soft-clip boundary limits. The coordinate system defined by WINDOW or SHOW will be
mapped into this area. The left limit must be less than the right limit and the bottom limit must
be less than the top limit. The default viewport is the entire surface.

By changing the VIEWPORT parameters, you change the proportions, size and position of the
drawing surface. Graphic output is automatically scaled to fit this drawing surface. Changing the
viewport does not affect any currently displayed graphics, only graphics that you subsequently
generate.

Graphic Display Unit Parameters
VIEWPORT soft-clip boundary parameters are defined in GDUs (Graphic Display Units). GDUs
are units that describe the physical bounds of the display area on the graphic output device. By
definition, Graphic Display Units are 1/100 of the Y axis of a plotting device. A unit in the X
direction and the Y direction is of the same length. The RATIO function returns the X to Y hard-
clip limits ratio and can be used to determine the VIEWPORT soft-clip limits.

The VIEWPORT soft-clip limits should not exceed the hard-clip limits. By default the left limit is
zero, the right limit is the X axis hard-clip limit, the bottom limit is zero and the top limit is the Y
axis hard-clip limit.

Porting Issues
In HTBasic, GDUs are always 100 in the Y direction. In HP BASIC, if the ratio is less than 1, the X
axis is 100 GDUs and the Y axis is (100*RATIO) GDUs long; if the ratio is greater than 1, the Y
axis is 100 GDUs and the X axis is (100*RATIO) GDUs long.

See Also:
CLIP, RATIO, SHOW, WINDOW

WAIT

Waits a specified time or for TRANSFER events.
Syntax: WAIT seconds

WAIT FOR {EOR|EOT} @io-path

where: seconds = numeric expression

Sample: WAIT Sec/7
WAIT FOR EOR @Device WAIT FOR EOT @Non-buffer
View Sample:    WAIT.BAS    (also found in examples directory)
Description:

If seconds are specified, the computer pauses execution for the length of time specified. The
seconds argument must be in the range 0 to 2,147,483.648 seconds. The number is rounded to
the nearest millisecond, or to the resolution of the computer clock.

The WAIT FOR EOR statement waits until an end-of-record event occurs during a TRANSFER.
Similarly, the WAIT FOR EOT statement waits until any TRANSFER active on the I/O path is
complete. The I/O path must be the I/O path used in the TRANSFER to specify the device. Using
the I/O path assigned to the buffer will cause an error. If the I/O path is not involved in an active
TRANSFER, the statement has no effect.

See Also:
ON DELAY, PAUSE

WAIT FOR EVENT
Suspends program execution until an event occurs.

Syntax: WAIT timeout value
Sample: WAIT FOR EVENT

WAIT FOR EVENT; TIMEOUT 30
Description:

At the WAIT FOR EVENT statement, program execution is suspended until an event occurs. When an
enabled event occurs, the WAIT FOR EVENT statement terminates and the event triggers the appropriate
pending ON EVENT statement. If no events are currently defined, WAIT FOR EVENT returns immediately.
WAIT FOR EVENT will wait indefinitely for an event to occur unless you use the TIMEOUT option with it. The
TIMEOUT option specifies the number of seconds after which program execution resumes if no event has
occurred.
The corresponding branch may or may not be taken, depending which has the highest priority: the current
context and its priority or the defining context and its priority.
Since the WAIT FOR EVENT statement suspends program execution, the computer is free to service other
processes. In the following construct, the computer is “busy waiting” (that is, the CPU stays busy doing
nothing):
10 GOTO 10
If keeping the CPU free to run other processes is important in your program or computer environment, we
recommend using either of the following two constructs:
10 LOOP
20 WAIT FOR EVENT
30 END LOOP
or:
10 WAIT FOR EVENT
20 GOTO 10
NOTE
WAIT FOR EVENT will wait if any events are defined, even if any or all events are disabled or are associated
with widgets that are not visible. If the widgets are not visible, WAIT FOR EVENT will terminate only if the
timeout period is reached, or if you press the Stop or Reset keys.

See Also:
ON DELAY, PAUSE

WHERE

Returns the logical pen position.
Syntax: WHERE x-variable, y-variable [,string-name$]

Sample: WHERE X,Y
WHERE Time,Temp,Status$
View Sample:    WHERE.BAS    (also found in examples directory)
Description:

The WHERE statement returns the current logical pen position in the x and y numeric variables
and pen status information in the optional string variable.

The optional string variable must be dimensioned to a length of at least three bytes. The three
string characters are interpreted as follows:

Byte Meaning 
1 Pen Status - Up/Down status of the Pen. If the character

is a "1" then pen is down; if it is a "0" then the pen is up.
2 Comma delimiter character.
3 Clip Indicator - If the character is a "0", then the

point is outside the P1, P2 limits. If a "1", the point
is inside the P1, P2 limits, but outside the viewport.
If a "2" then it's inside the viewport.

See Also:
DIGITIZE, GRAPHICS INPUT IS, PLOTTER IS, READ LOCATOR, SET ECHO, SET LOCATOR, TRACK

WHILE

Repeats an action while a condition is true.
Syntax: WHILE numeric-expression

statements
END WHILE

where: statements = zero, one or more program statements

Sample: 100 WHILE X<1000
. . .
200 END WHILE
View Sample:    WHILE.BAS    (also found in examples directory)
Description:

The WHILE expression is evaluated and if false (zero), execution continues with the statement
following the END WHILE. If true (non-zero), then the statements in the WHILE loop are
executed. When the END WHILE is reached, execution branches back to the WHILE statement
where the expression is again evaluated.

See Also:
FOR, LOOP, REPEAT

WILDCARDS

Enables or disables wildcard support.
Syntax: WILDCARDS [OFF | DOS | UX; ESCAPE char]

where: char = string expression evaluating to "\", "'" or ""

Sample: WILDCARDS OFF
WILDCARDS DOS
WILDCARDS UX;ESCAPE "\"
View Sample:    WILDCARDS.BAS    (also found in examples directory)
Description:

Wildcards are characters which can be used in a filename as a template to select a group of files
to be operated upon. A filename with wildcard characters in it will be compared with existing
filenames using special rules and all filenames that "match" are acted upon. It is necessary in HP
BASIC/WS to support wildcards in many commands since no operating system is available.
Under HTBasic, wildcards can be used directly in operating system commands using the
EXECUTE statement. However for convenience, wildcards are supported in the CAT statement.

The question mark "?" and the asterisk "*" are the wildcard characters. If the WILDCARDS
statement is executed it will return an error because wildcarding is always on. SYSTEM$
("WILDCARDS") always returns "ON:". Wildcarding never needs to be turned off because the
wildcard characters are not legal filename characters.

These are the rules used to match an actual filename with wildcards:

1. The "?" character will match any one character in the same position of an actual filename. For
example, the string "?AT" will match the strings "CAT", "BAT", "MAT" or any other string three
letters long which has an "A" as the second letter and "T" as the third letter.

2. The "*" character will match zero or more characters. For example, "*" will match all
filenames. "F*" will match all filenames starting with the letter "F". "*.BAS" will match all
filenames which have the ".BAS" extension.

FAT file systems with long file names exhibit an unexpected behavior. If the wildcards match
either the 8.3 name or the long name, the file is considered to match. The state of CONFIGURE
LONGFILENAMES has no effect.

See Also:
CAT, SYSTEM$

WINDOW

Sets the bounds for displayable graphics data in user defined units.
Syntax: WINDOW left,right,bottom,top

Sample: WINDOW 0,X,-100,100*X*RATIO
WINDOW -10,10,0,50
WINDOW 10,-10,50,0
Description:

WINDOW defines the units to be displayed within the VIEWPORT or the hard-clip boundaries.
They can be any units of measure you wish to work with (inches, miles, years, etc.). The default
WINDOW setting is equal to the default VIEWPORT setting.

The WINDOW and SHOW statements differ in how they map data onto the viewport. WINDOW
may use non-isotropic units (the X and Y units are of different lengths); whereas SHOW uses
isotropic units (the X and Y units are of equal length).

An image can be "mirrored" about the X or Y axes by reversing the order of the limits for each
dimension by specifying the high value before the low value.

See Also:
CLIP, SHOW, VIEWPORT

WRITEIO

Writes to a hardware register or a memory byte/word.
Syntax: WRITEIO interface-select-code, hardware-register; data

WRITEIO special-interface, address; data

where: hardware-register, data = numeric-expressions rounded to integers
special-interface = numeric-expression rounded to integer, legal
values are explained in the description
address = numeric-expression rounded to a linear address

Sample: WRITEIO Centronix,0;&HAA
WRITEIO -9826,Address;New_value
WRITEIO 8080,Ioadd;BINIOR(Oldata,&H80)
Description:

Hardware Registers
The specified data value is written to a hardware interface register. READIO/WRITEIO operations
should not be mixed with STATUS/CONTROL operations. Do not attempt to use READIO/WRITEIO
registers unless you are very familiar with the hardware. Use the STATUS/CONTROL registers
instead. The hardware manuals for your computer should be consulted for complete
documentation on the interface hardware. The User's Guide lists READIO/WRITEIO registers for
the interface device drivers included with HTBasic. Optional interface device drivers include
documentation for the registers.

READIO/WRITEIO registers in HTBasic are not compatible with HP BASIC READIO/WRITEIO
registers when the interface hardware is not the same. TransEra's IEEE-488 card uses the same
IEEE-488 chip as HP's HP-IB, therefore the READIO/WRITEIO registers are identical. The serial
interface hardware registers differ not only if the UART chip is different, but also if the circuitry
surrounding the chip is different. The TransEra GPIO interface is READIO/WRITEIO compatible
with HP's GPIO.

Special Interface Select Codes
There are a number of special interface select codes which can be used with the WRITEIO
statement. The legal values for special-interface are given in the following paragraphs. For
compatibility with earlier releases of HTBasic, WRITEIO 8080,L and WRITEIO -8080,L are still
supported but should be replaced with OUT and OUTW, respectively.

POKE Memory
WRITEIO 9826,L;V and WRITEIO -9826,L;V are used to "poke" the value V into a byte or word
of memory, respectively. L specifies the address of the byte/word to poke. If L is odd when doing
a word operation, the even address L-1 is used. L specifies an address within the HTBasic
process.

Warning: Poke should only be done on addresses returned by READIO(9827,I)! Poking any other
location can cause your system to crash, data to be lost and damage to your computer
hardware. Use of this function for any other address is unsupported, and TransEra cannot be
held responsible for any consequences.    Under some protected mode operating systems like
Windows NT, some of these operations are not allowed.

See Also:
CONTROL, INP, OUT, READIO, STATUS

XREF

Generates a cross reference of a program.
Syntax: XREF [[SUB] sub-name] [: option]

XREF [#device-selector [; [SUB] sub-name]] [: option]

where: sub-name = subprogram-name | FN function-name[$] |
string-expression
option = CM | IO | LL | LN | NF | NV | SB | SF | SV| UN

Sample: XREF
XREF Trigger:NV
XREF #701;Launch
Description:

XREF generates a cross reference list of line labels and numbers, io-path names, numeric and
string variables, subprograms, functions and COM block names. It also lists the number of
unused symbol table entries. The listing is sent to the PRINTER IS device unless a device selector
is specified.

Optional parameters include:

Option Meaning
CM Common Block Names
IO I/O Path Names
LL Line Labels
LN Line Numbers
NF Numeric Functions
NV Numeric Variables
SB SUB Subprograms
SF String Functions
SV String Variables
UN Unused Entries

If a reference is a SUB parameter, declared in a COM, COMPLEX, DIM, REAL or INTEGER
statement or a line label, it is marked by the "<-DEF" marker. After each program context, the
number of unused symbol table entries is displayed. If the subprogram name is specified as
MAIN, the MAIN context is cross-referenced.

If the program has been pre-run, array variables will be noted as Array next to the defination line
number.

Subprogram Pointer
If a string expression specify the subprogram name in the XREF statement, the string
expression is called a subprogram pointer because it "points" to the subprogram rather than
explicitly naming it. As the expression changes, the pointer points to different subprograms. The
subprogram must be specified with the initial character in uppercase, and subsequent
characters in lowercase. Subprogram pointers can also be used in CALL, DELSUB, INMEM, and
LOADSUB statements.

Porting to HP BASIC:
The use of subprogram pointers in XREF is a new HTBasic feature that is not available in HP
BASIC. It should not be used in programs that must be ported back to HP BASIC.

See Also:
PRINTALL IS, TRACE

Error Codes
1 to 25

Error 1 Missing Option or Configuration Error.
Error 2 Memory Overflow.
Error 3 Line not Found in Current Context.
Error 4 Improper RETURN.
Error 5 Improper Context Terminator.
Error 6 Improper FOR/NEXT Matching.
Error 7 Undefined Function or Subprogram.
Error 8 Improper Parameter Matching.
Error 9 Improper Number of Parameters.
Error 10 String Type Required.
Error 11 Numeric Type Required.
Error 12 Attempt to Re-declare Variable.
Error 13 Array Dimensions not Specified.
Error 14 OPTION BASE not allowed here.
Error 15 Invalid bounds.
Error 16 Improper or Inconsistent Dimensions.
Error 17 Subscript out of Range.
Error 18 String Overflow or Sub-string Error.
Error 19 Improper Value or out of Range.
Error 20 INTEGER overflow.
Error 22 REAL overflow.
Error 24 Trig argument too large.
Error 25 Magnitude of ASN or ACS >> 1.0

Error Codes
26 to 49

Error 26 Zero to negative power.
Error 27 Negative base to non-integer power.
Error 28 LOG or LGT of a non-positive number.
Error 29 Illegal floating point number.
Error 30 SQR/SQRT of a negative number.
Error 31 Division (or MOD) by zero.
Error 32 String is not a valid number.
Error 33 Improper arg for NUM or RPT$.
Error 34 Line not an IMAGE Statement.
Error 35 Improper IMAGE Statement.
Error 36 Out of data in READ.
Error 38 TAB or TABXY not allowed here.
Error 40 Improper COPYLINES, MOVELINES or renumber.
Error 41 First line number greater than second.
Error 43 Non-square Matrix.
Error 44 Result cannot be an operand.
Error 46 No program in memory.
Error 47 Incorrect or inconsistent COM declarations.
Error 49 Branch destination not Found.

Error Codes
50 to 99

Error 51 File not currently Assigned.
Error 52 Improper MSUS.
Error 53 Improper File Name.
Error 54 Duplicate File Name.
Error 55 Directory Overflow.
Error 56 File or Path not found.
Error 58 Improper File Type.
Error 59 End of File or Buffer.
Error 60 End of Record.
Error 64 Mass Storage Media Overflow.
Error 65 Incorrect Data Type.
Error 67 Illegal Mass Storage Parameter.
Error 68 Syntax Error during GET.
Error 72 Drive Not Found.
Error 80 Disk changed or not in Drive.
Error 82 Mass Storage unit not present.
Error 83 Write Protected.
Error 84 Sector not Found.
Error 85 Media not Initialized.
Error 88 READ Data Error.
Error 89 Checkread error.
Error 90 Mass storage system error.

Error Codes
100 to 149

Error 100 Numeric IMAGE field for String Item.
Error 101 String IMAGE field for Numeric Item.
Error 102 Numeric Field specifier is too Large.
Error 103 Data item has no corresponding IMAGE specifier.
Error 105 Numeric Field specifier is too Small.
Error 106 IMAGE exponent field too Small.
Error 107 IMAGE sign specifier missing.
Error 117 Too many nested structures.
Error 118 Too many structures in context.
Error 120 Not allowed while program running.
Error 122 Program is not Continuable.
Error 128 Line too long during GET or a CHANGE.
Error 131 Unrecognized Keycode.
Error 133 DELSUB of non-existent or busy subprogram.
Error 134 Improper Scratch Statement
Error 136 REAL underflow.
Error 141 Variable already allocated.
Error 142 Variable not Allocated.
Error 143 Reference to missing OPTIONAL Parameter.
Error 145 May not build COM at this time.
Error 146 Duplicate Line label in this Context.

Error Codes
150 to 299

Error 150 Bad select code or device specifier.
Error 153 Insufficient data for ENTER.
Error 155 Improper Interface Register number.
Error 157 No ENTER terminator found.
Error 158 Improper IMAGE specifier or nesting.
Error 159 Numeric data not received.
Error 163 Interface not present.
Error 164 Illegal BYTE/WORD operation.
Error 167 Interface Status Error.
Error 168 Device Timeout.
Error 170 I/O operation not allowed.
Error 171 Illegal I/O addressing sequence.
Error 172 Peripheral Error.
Error 173 Active or System Controller Required.
Error 177 Undefined I/O Path Name.
Error 183 Permission denied.
Error 186 Cannot open the specified directory.
Error 187 Cannot link across devices.
Error 188 Cannot rename with "." or "..".
Error 189 Too many open files.
Error 190 File size too big.
Error 191 Too many links to a file.
Error 193 Resource deadlock would occur.
Error 194 Operation would block.
Error 195 Too many levels of symbolic link.
Error 196 Target device busy.
Error 290 Invalid ESCAPE character

Error Codes
300 to 459

Error 330 LEXICAL ORDER IS array too small.
Error 331 Repeated subscript in REORDER vector.
Error 332 Non-existent dimension given.
Error 333 Improper subscript in REORDER vector.
Error 334 REORDER vector has wrong size.
Error 335 Indirection array is not a Vector.
Error 338 Key subscript out-of-range.
Error 340 Table Length Error.
Error 341 Order Table Lower Byte Error.
Error 342 Not a One-dimensional INTEGER Array.
Error 343 Special Case Index is Too Big.
Error 344 2-to-1 List Length Error.
Error 346 INDENT parameter out of range.
Error 347 Structures improperly matched.
Error 401 Bad system function argument.
Error 427 Priority may not be lowered.
Error 435 EXEC not allowed on this Binary.
Error 453 File in Use.
Error 455 Possibly corrupt file.
Error 456 Unsupported directory operation.
Error 459 Specified file is not a directory.

Error Codes
460 to 699

Error 460 Directory not empty.
Error 462 Invalid Password.
Error 465 Invalid rename across volumes.
Error 471 TRANSFER not supported by Interface.
Error 481 File locked or open Exclusively.
Error 482 Not allowed with a directory.
Error 485 Invalid Volume Copy.
Error 511 MAT INV result array must be REAL.
Error 543 Improper Dimensions for REDIM.
Error 553 Cannot load object file.
Error 602 Improper BUFFER Lifetime.
Error 603 Variable not declared BUFFER.
Error 604 Bad TRANSFER source or destination.
Error 606 Improper TRANSFER parameters.
Error 609 IVAL/DVAL result too large.
Error 611 Premature TRANSFER termination.
Error 612 BUFFER pointers in use.
Error 620 Complex value not allowed here.
Error 623 ATN is undefined at +/- i.
Error 624 ACSH/ATNH argument out of range.
Error 625 Bad SEARCH condition on Complex.

Error Codes
700 to 899

Error 700 Improper Plotter specifier.
Error 704 Upper bound not greater than lower bound.
Error 705 VIEWPORT/CLIP Beyond Hard Clip Limits.
Error 708 Device not initialized.
Error 713 Request not supported by device.
Error 730 Internal error occurred in library call.
Error 733 GESCAPE opcode not recognized.
Error 810 Feature not supported on this system.
Error 815 Cannot access system time.
Error 826 EXECUTE process status failure.
Error 827 String too long for EXECUTE.
Error 831 Write to a broken pipe.
Error 832 Cannot seek on a pipe.
Error 833 Wrong direction data transfer in pipe.
Error 841 CSUB run-time error.
Error 863 Not in a window system.
Error 898 Softkey Macro is too long.
Error 899 Key number out of range.

Error Codes
900 to 999

Error 900 Undefined softkey macro.
Error 901 Softkey Macro memory overflow.
Error 902 Must delete entire context.
Error 903 No line number room to renumber.
Error 905 CHANGEd line too long.
Error 906 SUB or DEF FN not allowed here.
Error 909 May not replace SUB or DEF FN.
Error 910 Identifier not found in context.
Error 935 Identifier too long.
Error 936 Unrecognized Character.
Error 937 Invalid OPTION BASE.
Error 940 Duplicate formal parameter name.
Error 949 Syntax error at cursor.
Error 951 Incomplete Statement or Command.
Error 956 Source/destination mismatch.
Error 962 Programmable only.
Error 963 Command only.
Error 977 Statement or Command too complex.
Error 980 Too many symbols in context.
Error 985 Invalid Quoted String.
Error 987 Invalid Line Number.

Error Codes 1000-2099
Error 1100 Unable to load DLL.
Error 1101 Unable to unload DLL.
Error 1102 DLL is already loaded.
Error 1103 Unable to load function.
Error 1104 Function is already loaded.
Error 1105 Alias previously used.
Error 1106 Invalid or no return type specified.
Error 1107 Invalid or no DLL name specified.
Error 1108 Insufficient Dimension for passing string by reference.
Error 1109 Unsupported Number of Parameters.
Error 1110 Possible HTBasic Memory Corruption
Error 2000 Stack Overflow.
Error 2001 Too many Open Files.
Error 2002 HELP file not found.
Error 2003 Bad Device Driver number.
Error 2004 Bad Key Function number.
Error 2005 Illegal in Run-only Version.
Error 2006 Illegal DUMP device.
Error 2007 Wrong Object Type.
Error 2008 May not modify CSUB.
Error 2009 Wrong Revision.
Error 2010 May Not load driver Here.
Error 2011 Exceeded Graphics Driver Limit.
Error 2012 Illegal CALL in CSUB.

Error Codes 10,000+
Errors over 10,000 are errors passed through HTBasic from the Windows Operating System.

Error 1
Missing Option or Configuration Error

The operation you were attempting is not available in this version. Because of the limitations of some computer
systems, not all statements and functions are available in every version of HTBasic. When porting HP BASIC
programs to HTBasic, if this error occurs, check the Reference Manual entry for more information.

Error 2
Memory Overflow

There is not enough free memory for the requested operation. The -w switch, explained in the Installing and Using
manual, may solve the problem.

Error 3
Line not Found in Current Context

The specified program line could not be found in this context.

Error 4
Improper RETURN

A RETURN or ERROR RETURN was executed while not inside a subroutine or a user defined function.

Error 5
Improper Context Terminator

No END statement was found for the MAIN context, SUBEND statement for a subprogram or RETURN and FNEND
statements for a user defined function.

Error 6
Improper FOR/NEXT Matching

Either FOR...NEXT loops overlap or a FOR or NEXT statement is missing.

Error 7
Undefined Function or Subprogram

The specified user defined function or subprogram is not currently in memory or could not be found in the file.

Error 8
Improper Parameter Matching

The data type of an argument in a CALL/FN did not match the data type of the associated parameter in the
SUB/DEF FN statement.

Error 9
Improper Number of Parameters

There are either too many or too few parameters in the CALL or FNxxx statement.

Error 10
String Type Required

A numeric value was specified in a place where a string value is required.

Error 11
Numeric Type Required

A string value was specified in a place where a numeric value is required.

Error 12
Attempt to Redeclare Variable

The variable has already appeared in an ALLOCATE, DIM, REAL, INTEGER, COM, SUB or DEF FN statement and
cannot be redeclared.

Error 13
Array Dimensions not Specified

An attempt was made to use an array which is not dimensioned. Press the PRT ALL key and try the operation again
to see the names of all arrays in the program which are not dimensioned.

Error 14
OPTION BASE not allowed here

A DIM, REAL, INTEGER, COM or OPTION BASE statement has already been processed. The OPTION BASE statement
must appear before any of these statements. Only one OPTION BASE is allowed per context.

Error 15
Invalid bounds

The array bounds specified are not valid. The lower bound must be less than the upper bound. Each bound must
be between -32768 and 32767. The size of a dimension cannot be larger than 32767.

Error 16
Improper or Inconsistent Dimensions

Several conditions return this error: The number of subscripts specified conflicts with the RANK of the array. The
size of a dimension cannot be larger than 32767. The dimension specified in a function such as BASE is less than
one or greater than the RANK of the array. This array has not been declared. The number of dimensions or
elements in this array are not proper for the attempted operation.

If CONFIGURE DIM is OFF, this error also occurs if the variable has not been declared.

Error 17
Subscript out of Range

A subscript value is outside the specified dimension bounds.

Error 18
String Overflow or Sub-string Error

The string value is either too long to fit or the sub-string is incorrectly specified. An overflow can occur when a
string becomes longer than 32767, longer than the declared length of the variable it is assigned to, or when a
string becomes too long for the internal buffers used in an operation.

Error 19
Improper Value or out of Range

The specified value is not within the valid range. Consult the "Keyword Dictionary" chapter for this operation to
find the valid range of values.

Error 20
INTEGER overflow

The value calculated exceeds the range that an INTEGER variable can hold: -32768 through +32767.

Error 22
REAL overflow

The value calculated is too big to be represented by the REAL data type. See MINREAL and MAXREAL in the
"Keyword Dictionary" chapter.

Error 24
Trig argument too large

If the argument to a trigonometric function gets too large, it can not be evaluated correctly. If you get this error,
you may wish to examine your algorithm or use range reduction.

Error 25
Magnitude of ASN or ACS > 1

The argument to the ASN and ACS functions must be less than one.

Error 26
Zero to negative power

The number zero can only be raised to positive powers or to the zeroth power.

Error 27
Negative base to non-integer power

An attempt was made to raise a negative number to a fractional power.

Error 28
LOG or LGT of a non-positive number

The argument to the LOG and LGT functions can not be negative or zero.

Error 29
Illegal floating point number

The number encountered was not a valid REAL number.

Error 30
SQR/SQRT of a negative number

You cannot take the square root of a negative number.

Error 31
Division (or MOD) by zero

The divisor specified was zero or an operation was attempted that resulted in a division by zero (for example,
SHOW 1,1,1,1).

Error 32
String is not a valid number

The characters in the string do not represent a valid numeric value.

Error 33
Improper arg for NUM or RPT$

The resultant string must be less than 32767 characters in length, and the original string must be greater than 0
characters in length.

Error 34
Line not an IMAGE Statement

The program line specified for the USING image was not an IMAGE statement.

Error 35
Improper IMAGE Statement

The IMAGE string or statement is zero length.

Error 36
Out of data in READ

There are no DATA statements that have not been read. Use the RESTORE statement if you wish to re-read
existing DATA statements.

Error 38
TAB or TABXY not allowed here

The tab functions are not allowed in this statement.

Error 40
Improper COPYLINES, MOVELINES or
renumber

The line numbers specified cannot be used for this operation because: the program sections overlap, line number
is not in the range 1 to 4,194,304, the renumber increment is zero, there is not enough room to renumber or a
SUB/DEF statement is included, or the destination is not the last program line.

Error 41
First line number greater than second

In a line number range the first line number must be smaller than the second.

Error 43
Non-square Matrix

The array specified does not have the same dimension size in the first and second dimensions, i.e., it is not
"square."

Error 44
Result cannot be an operand

The result matrix is not allowed to be one of the operand matrices.

Error 46
No program in memory

There are no program lines in memory or in the range specified.

Error 47
Incorrect or inconsistent COM declarations

The COM statement specifies either a different number of variables or different dimensions than a previous COM
statement specified.

Error 49
Branch destination not Found

The ON statement branch destination specified is not defined.

Error 51
File not currently Assigned

The I/O path involved in this operation must be ASSIGNed to a file.

Error 52
Improper MSUS

The Path Specifier (formerly Mass Storage Unit Specifier) is invalid.

Error 53
Improper File Name

The file name specified contains illegal characters or is not of the proper format for this operating system.

Error 54
Duplicate File Name

A file, directory or device, already exists with this name. If you are trying to save a program, use the RE-SAVE or
RE-STORE statements to overwrite the existing file. Use the PURGE statement to remove the file.

Error 55
Directory Overflow

The specified mass storage device directory is full. You must either remove an existing file, PURGE or change the
size of the directory.

Error 56
File or Path not found

No file or directory exists with this name. You may have forgotten to include the proper device or path specifiers.
Use CREATE or CREATE DIR if you wish to create a new file or directory with this name.

Error 58
Improper File Type

The file type is incorrect for the requested operation or an attempt was made to LOAD an old revision PROG file.

A widget create attempt tried to load a non-widget file.

Error 59
End of File or Buffer

The end-of-file or end-of-buffer was reached unexpectedly during this operation.

Error 60
End of Record

The end-of-record was reached unexpectedly during a random file operation. Either the record size specified in the
CREATE BDAT was too small, or the program is attempting to write too much into one record.

Error 64
Mass Storage Media Overflow

The mass storage device is full. This error is also returned when accessing a device through its operating system
name (rather than an interface select code) and the device refuses to accept output for any reason.

Error 65
Incorrect Data Type

The array data type is incorrect for this operation. Consult the "Keyword Dictionary" chapter to see if the required
type is INTEGER, REAL, or string. Some versions of HTBasic require specific data formats for full-screen GLOADs.
Refer to the Installing and Using manual.

Error 67
Illegal Mass Storage Parameter

A mass storage parameter, such as the record number, was illegal. Record numbers start at one, not zero.

Error 68
Syntax Error during GET

At least one of the incoming program lines has invalid syntax.

Error 72
Drive Not Found

The specified drive was not found. You must either specify a drive which is legal for your operating system or
specify an HP style volume and define a translation for it using the CONFIGURE MSI statement.

Error 80
Disk changed or not in Drive

The disk drive is not ready. The disk drive door may be open or a disk has just been inserted and the drive is not
yet ready.

Error 82
Mass Storage unit not present

The specified device is not available. Specifying a non-existent device can cause this error. The unit number is
unknown.

Error 83
Write Protected

The disk, device, directory or file is write protected.

Error 84
Sector not Found

The disk may have been initialized in a non-standard way. If an attempt is made to use an HP LIF disk, this error
will be returned in most cases, since the disk format is different. You must use disks which have been formatted
(initialized) for your operating system.

Error 85
Media not Initialized

The disk drive was not able to find any format information on the disk. The disk has not been initialized or it was
initialized on a system whose disk format is alien to your operating system. A "General Failure" reported by a
device driver will also cause this error.

Error 88
READ Data Error

The disk controller reported a READ error. This is usually caused by physical or magnetic damage to the data
recorded on the disk.

Error 89
Checkread error

A verify check of the data on the disk failed. The disk may be physically or magnetically damaged.

Error 90
Mass storage system error

The operating system reported that it could not complete the requested operation.

Error 100
Numeric IMAGE field for String Item

For example, PRINT USING "D";S$.

Error 101
String IMAGE field for Numeric Item

For example, PRINT USING "A";X.

Error 102
Numeric Field specifier is too Large

The resulting number would be too long for the internal buffers to handle.

Error 103
Data item has no corresponding IMAGE
specifier

For example, PRINT USING "X";PI.

Error 105
Numeric Field specifier is too Small

The number will not fit in the specified field width. For example, PRINT USING "D";12.

Error 106
IMAGE exponent field too Small

The exponent value will not fit in the specified field width. For example, PRINT USING "3DEE";1E200.

Error 107
IMAGE sign specifier missing

A negative data item corresponds to an IMAGE specifier that does not include a sign specifier. For example, PRINT
USING "D";-1.

Error 117
Too many nested structures

There are too many nested program structures in the program.

Error 118
Too many structures in context

There are too many FOR/NEXT loops in the program context.

Error 120
Not allowed while program running

FIND, CHANGE, COPYLINES, MOVELINES, REN, RUN, CONT, SCRATCH, EDIT, and adding, deleting or changing a
program line are not allowed while a program is running.

Error 122
Program is not Continuable

The program must be paused to be able to continue running.

Error 128
Line too long during GET or a CHANGE

Program lines are limited to 256 characters in a LIF ASCII input file or the result of a CHANGE makes the program
line longer than 256 characters.

Error 131
Unrecognized Keycode

The specified keycode is not valid. The key pressed has not been assigned to a function or keycodes OUTPUT to
the KBD device were illegal.

Error 133
DELSUB of non-existent or busy subprogram

The specified subprogram either does not exist in memory, has been called or is specified in an active ON
statement.

Error 134
Improper Scratch Statement

The second keyword was not A, ALL, B, BIN, C, COM, KEY, R or RECALL.

Error 136
REAL underflow

The value specified or calculated is too small to be represented by the REAL data type. MINREAL is the smallest
absolute value representable by the REAL data type.

Error 141
Variable already allocated

This variable has already been ALLOCATEd and cannot be ALLOCATEd again until it is first DEALLOCATEd.

Error 142
Variable not Allocated

This variable has not been allocated memory space. An ALLOCATE statement must be executed before this
operation can be done.

Error 143
Reference to missing OPTIONAL Parameter

The CALL to the subprogram or function did not specify an argument for this parameter.

Error 145
May not build COM at this time

New COM blocks may not be built during a LOADSUB but must be specified in the MAIN context or a subprogram
when the program is first run.

Error 146
Duplicate Line label in this Context

Two line labels have the same name in a context. Make one a different name.

Error 150
Bad select code or device specifier

The interface select code or device specifier is invalid.

Error 153
Insufficient data for ENTER

Not enough values were found in the input data before a terminator was found.

Error 155
Improper Interface Register number

This register number is not supported by this interface or I/O path.

Error 157
No ENTER terminator found

The proper termination was not received during the ENTER. Depending on the operation, terminators might be the
line-feed character or the EOI signal. ENTER USING can be used to accept data from sources which do not use the
default terminators.

Error 158
Improper IMAGE specifier or nesting

The IMAGE specifier is either invalid or incorrectly nested. See IMAGE in the "Keyword Dictionary" chapter for the
correct syntax.

Error 159
Numeric data not received

No numeric value was found in the input data. Make sure that the device is sending ASCII digits before it sends an
EOI.

Error 163
Interface not present

There is no interface with the interface select code specified. For some interfaces, a driver must be loaded with
the LOAD BIN statement before the interface is available to HTBasic. Consult the Installing and Using manual for
more information.

Error 164
Illegal BYTE/WORD operation

The specified operation is not allowed for a BYTE or WORD value.

Error 167
Interface Status Error

An error condition has occurred on the interface, such as a UART error on a serial interface.

Error 168
Device Timeout

The device did not respond to the I/O operation within the timeout specified.

Error 170
I/O operation not allowed

An attempt was made to do an illegal operation. The following are some problems to consider. The device may not
support the operation. Or a primary address was specified and shouldn't be. Or the operation requires the
controller to be or not be active/system controller. USING is not allowed with a LIF ASCII file. For more information,
check the "Keyword Dictionary" chapter for the statement being executed and check the documentation for the
device driver being accessed.

Error 171
Illegal I/O addressing sequence

IEEE-488 talk, listen and secondary addresses must be in the range 0 to 31. DAQ secondary addresses must be
set. DAQ secondary addresses must be set.

Error 172
Peripheral Error

A hardware error occurred. Refer to the driver documentation for more information.

Error 173
Active or System Controller Required

The system must be the active or system controller for this operation.

Error 177
Undefined I/O Path Name

The I/O path name has not been ASSIGNed to a device, file or buffer.

Error 183
Permission denied

You do not have the correct permissions for the operation attempted. Common problems are: Search permission is
denied for a component of the path. You do not have read/write permission for the file specified or for the
directory the file/directory exists in. The first part of the file is locked so an ASSIGN statement can't complete.

Error 186
Cannot open the specified directory

An error was returned by the operating system when one of the specified directories was accessed.

Error 187
Cannot link across devices

The operating system requires that this type of LINK refer to a file that is on the same mass storage device. If you
have multiple devices and are not sure where they are mounted in the directory tree, ask your system
administrator.

Error 188
Cannot rename with "." or ".."

An attempt was made to rename "." or "..". These names are fixed and can not be renamed.

Error 189
Too many open files

The limit to the number of simultaneously open files has been reached. DOS allows this number to be changed
with the FILES=xxx line in the CONFIG.SYS boot file, however no normal DOS process may have more than 20
open files. Error number 2001 used to be returned by HTBasic for this condition. Now that HP BASIC has added this
error, HTBasic has been changed for compatibility.

Error 190
File size too big

The operating system has a maximum limit to the size of a file and that limit has been exceeded.

Error 191
Too many links to a file

The link count of the file/directory would exceed the maximum allowed.

Error 193
Resource deadlock would occur

An attempt was made to lock a system resource that would have resulted in a deadlock situation.

Error 194
Operation would block

The device is in use. Attempting this operation at this time would suspend HTBasic.

Error 195
Too many levels of symbolic link

Too many symbolic links were encountered in translating the pathname specified.

Error 196
Target device busy

The file/directory could not be deleted or renamed because it is the mount point for a mounted file system, is
being used by another process, or is the current directory, ".".

Error 290
Invalid ESCAPE character

The set of valid wildcard escape characters is explained in the "Keyword Dictionary" chapter entry for WILDCARDS.

Error 330
LEXICAL ORDER IS array too small

The array specified in the LEXICAL ORDER statement must have at least 257 elements. If the length specified in
the 257th element is not zero, there must be that many more elements in the array. Remember the OPTION BASE
when figuring the number of elements.

Error 331
Repeated subscript in REORDER vector

The "MAT REORDER..BY X,D" statement requires that the subscripts specified in X be unique.

Error 332
Non-existent dimension given

The dimension specified in a BASE, SIZE or MAT REORDER statement is less than one or greater than the RANK of
the array.

Error 333
Improper subscript in REORDER vector

The "MAT REORDER..BY X,Dim" statement requires that the subscripts specified in X be legal subscripts for the
specified dimension (i.e., in range BASE(Dim) to BASE(Dim)+SIZE(Dim)-1).

Error 334
REORDER vector has wrong size

The MAT REORDER..BY X statement requires that the SIZE of X be the same as the SIZE of the array dimension
being acted upon.

Error 335
Indirection array is not a Vector

The MAT REORDER..BY X and MAT SORT...TO X statements require that X be a vector.

Error 338
Key subscript out-of-range

In a MAT SORT key, the "*" must be present in the same dimension of each sort key.

Error 340
Table Length Error

The length of the Special Case Table, stored in the 257th element of the LEXICAL ORDER array, must be in the
range zero to sixty-three.

Error 341
Order Table Lower Byte Error

In a LEXICAL ORDER array, the lower byte of the first 256 entries indicates a special case. Legal values are
explained in the User's Guide.

Error 342
Not a One-dimensional INTEGER Array

The array specified in the LEXICAL ORDER statement must be INTEGER and must have a RANK of one.

Error 343
Special Case Index is Too Big

The index points past the end of the special case table, whose length is specified in the 257th element of the
array.

Error 344
2-to-1 List Length Error

In the special case table, a 2-to-1 list must start with a length. The length gives the number of entries in the list.
You will get this error if the length is negative, zero or longer than the special case table.

Error 346
INDENT parameter out of range

The values specified in the INDENT statement are not legal.

Error 347
Structures improperly matched

The FOR...NEXT, LOOP...END LOOP, REPEAT...UNTIL, SELECT...END SELECT, WHILE...END WHILE, program structures
are either nested improperly or there is a missing structured statement.

Error 401
Bad system function argument

A value passed to a system function was out of range or otherwise illegal. See the "Keyword Dictionary" chapter
for this function for a description of legal values.

Error 427
Priority may not be lowered

When executing an error handling routine, the priority cannot be changed.

Error 435
EXEC not allowed on this Binary

The file is not an executable file or is corrupt.

Error 453
File in Use

The file or device is in use and this operation can not occur at this time.

Error 455
Possibly corrupt file

The executable file specified by EXECUTE is corrupt or is not an executable file, the file was locked, or the
operating system is no longer recognizing the file as a valid, ASSIGNed file.

Error 456
Unsupported directory operation

The directory was specified in an illegal way, usually involving "." or "..".

Error 459
Specified file is not a directory

The specifier must refer to a directory, not a regular file. Or if the specifier includes a path, one of the directories
specified in the path is not a directory.

Error 460
Directory not empty

The directory could not be deleted because files or sub-directories still exist in it.

Error 462
Invalid Password

An HP LIF style file password was started with the "<" character but no ">" character was found.

Error 465
Invalid rename across volumes

RENAME can not be used to move a file from one disk to another.

Error 471
TRANSFER not supported by Interface

TRANSFER is only supported on some devices. It is not supported on CRT, KBD, or parallel ports. If the device or
interface is supposed to support TRANSFER, make sure the device driver is the current revision.

Error 481
File locked or open Exclusively

The file has already been ASSIGNed by yourself or another user and the file or part of the file is LOCKed for
exclusive access. You may want to write a loop which tries the operation several times, waiting in between for the
file to be UNLOCKed. Or you may want to LOCK the file yourself so that no one else can deny your access to it.

Error 482
Not allowed with a directory

Under DOS, a directory cannot be ASSIGNed.

Error 485
Invalid Volume Copy

The reasons for this error depend on your operating system. Copying a volume may not be supported on some
systems.

Error 511
MAT INV result array must be REAL

The destination of a matrix invert operation must be a REAL array.

Error 543
Improper Dimensions for REDIM

The destination matrix could not be implicitly re-dimensioned by the MAT statement because the RANK of the
destination matrix is not the same as the number of ranges specified in the array to the right of the equal sign.

Error 553
Cannot load object file

The object file being LOADed does not exist, has an invalid parameter, one of the library files needed to run this
application could not be found, or the driver is not supported on the current Operating System.

Error 554
Object file not a widget

The file did not have a header which could be recognized as a widget.

Error 557
Undefined widget

The widget specified does not have internal (within HP BASIC for Windows) or external (WI prefixed file) code
which the binary could locate.

Error 558
Undefined widget attribute

The widget attribute specified in conjunction with SET or RETURN is not valid.    See the list of valid attributes for
the widget in question.

Error 559
Wrong parameter type for attribute

The parameter being passed to an attribute is of the wrong type.    See the list of valid attributes for the widget in
question.

Error 560
Menu not allowed in child widget

Menus are not allowed in a child widget.    Menus can only be children of a level-0 panel, or of another menu.

Error 561
Widget must have a parent

Widget cannot be created without a parent.

Error 562
Parent widget does not support this type of child

The parent widget does not allow this type of widget to be a child.    See if the widget can be used as a level-0
widget or as a child of another widget.

Error 563
SET not allowed for attribute

SET not allowed for attribute.

Error 564
RETURN not allowed for attribute

RETURN not allowed for attribute.

Error 565
VALUE out of range for attribute

Value out of range for attribute.    Check the list of possible values for the attribute on the widget.

Error 566
Invalid value for attribute

Invalid value for attribute.    The value may be in range, but this particular value is not allowed.

Error 567
Too few elements in array for attribute

Too few elements in array for attribute.    Make the array size larger.

Error 569
Invalid font specification

Invalid font specification.    See the FONT attribute under the widget being used.    Typical font specs look like “10
BY 20, BOLD”, etc.

Error 570
Undefined dialog type

A DIALOG type must be one of several pre-defined dialog box types.    Typical types are “INFORMATION”,
“WARNING”, AND “STRING”.

Error 571
Widget has no events to set

The widget has no events to set.    Some widgets have no events associated with them.    The widget causing this
error is such a widget.

Error 572
Undefined widget event

The event specified is not one of the valid events for that particular widget.    See the list of events for the widget
in question.

Error 573
Attribute not available to child widget

Attribute not available to child widget.    See if the widget can be made a level-0 widget or if the attribute can be
deleted.

Error 574
Attribute not available to level-0 widget

Attribute not available to level-0 widget.    See if the widget can be made a child of another widget or if the
attribute can be deleted.

Error 602
Improper BUFFER Lifetime

It is an error to ASSIGN an I/O Path to a BUFFER if the BUFFER can cease to exist before the I/O Path. If the I/O Path
is local, the BUFFER's lifetime will always equal or exceed the I/O Path's. If the I/O Path is in a COM block, the
BUFFER must be in the same COM. If the I/O Path is a parameter, then the BUFFER must be in a COM block or
must be a parameter also.

Error 603
Variable not declared BUFFER

The variable specified in the ASSIGN...TO BUFFER statement must be declared with the BUFFER keyword following
it in the DIM, INTEGER, REAL or COM statement. If the buffer variable is a parameter, it must be passed with the
BUFFER keyword following it in the DEF or SUB statement.

Error 604
Bad TRANSFER source or destination

Either the source or the destination, but not both, must be a BUFFER.

Error 606
Improper TRANSFER parameters

One of the following problems exists in the TRANSFER statement: DELIM can not be used on outbound transfers or
if the I/O path has the WORD attribute. Or EOT was set to RECORD but no EOR was given to define a record.

Error 609
IVAL/DVAL result too large

The value in the string represents a number which is too large for the function to convert.

Error 611
Premature TRANSFER termination

An error occurred which caused the transfer to terminate abnormally.

Error 612
BUFFER pointers in use

The buffer pointer or count couldn't be changed because of an active transfer.

Error 620
Complex value not allowed here

This function does not handle complex values.

Error 623
ATN is undefined at +/- i

The ATN function is undefined at CMPLX(0,1) and CMPLX(0,-1).

Error 624
ACSH/ATNH argument out of range

The value specified is not within the legal range for the ACSH or ATNH functions.

Error 625
Bad SEARCH condition on Complex

This search condition is not allowed for complex arrays.

Error 700
Improper Plotter specifier

This plotter specifier is not supported or this interface is not legal for graphics output.

Error 704
Upper bound not greater than lower bound

The value of the upper clipping bound specified is lower than the value of the lower clipping bound.

Error 705
VIEWPORT/CLIP Beyond Hard Clip Limits

A value specified in the CLIP or VIEWPORT statement is too large or too small for the current graphic device.

Error 708
Device not initialized

The device is not the current PLOTTER IS or other active graphic device.

Error 713
Request not supported by device

This device does not support the requested operation.

Error 730
Internal error occurred in library call

A    library or system call returned an unexpected error.

Error 733
GESCAPE opcode not recognized

The opcode specified is not supported on this device.

Error 810
Feature not supported on this system

This feature is not included in this release of HTBasic.

Error 815
Cannot access system time

The call to read the system time failed unexpectedly.

Error 826
EXECUTE process status failure

The process no longer exists and can not be killed.

Error 827
String too long for EXECUTE

Shorten the string and try again.

Error 831
Write to a broken pipe

OUTPUT on this I/O path is no longer allowed because the pipe to the process has been broken. The process
probably terminated.

Error 832
Cannot seek on a pipe

The use of a record number with this I/O path is not allowed because the path refers to a pipe.

Error 833
Wrong direction data transfer in pipe

You can not ENTER from a pipe unless the pipe-specifier ends with the pipe character, "|". You can not OUTPUT to
a pipe unless the pipe-specifier starts with the pipe character.

Error 841
CSUB run-time error

The CSUB called at this line encountered an error. Contact the supplier of the CSUB for more information.

Error 863
Not in a window system

This statement is not supported unless HTBasic is executing under a windowing system.

Error 898
Softkey Macro is too long

The length of the string must be less than 256 characters and there must be enough available macro memory to
store it. LIST KEY reports the current amount of available softkey macro memory.

Error 899
Key number out of range

The specified key number is outside the legal range. See the CONFIGURE KEY statement.

Error 900
Undefined softkey macro

The key which you pressed does not presently have a softkey macro definition.

Error 901
Softkey Macro memory overflow

The available memory reserved for user defined Softkey Macro definitions is full.

Error 902
Must delete entire context

To delete a subprogram context or the SUB or FN statement of a subprogram context, all program lines in the SUB
of DEF    context must be deleted.

Error 903
No line number room to renumber

A renumber operation would create line numbers larger than 4,194,304. (Note: The HP BASIC limit was 32766.)

Error 905
CHANGEd line too long

The CHANGE operation could not be completed because it would have created a line which is longer than 255
characters.

Error 906
SUB or DEF FN not allowed here

A new SUB or DEF FN must be created with a line number greater than all existing program lines.

Error 909
May not replace SUB or DEF FN

The SUB or DEF FN line delimits a context and so the SUB or DEF FN keywords can not be changed. Create a new
context at the end of the program if necessary and use MOVELINES to move program lines to another context.

Error 910
Identifier not found in context

The specified identifier was not found in the current context. This error can also occur if an attempt is made to
access a main context variable after adding a program line. Adding a program line causes the values of all
variables to be discarded.

Error 935
Identifier too long

An identifier may be up to 15 characters in length.

Error 936
Unrecognized Character

A character in the program line was not legal. You probably mistyped an option in the LOAD BIN statement or that
particular BIN doesn't support the option specified.

Error 937
Invalid OPTION BASE

The value specified was not zero or one.

Error 940
Duplicate formal parameter name

The parameter appears more than once in the formal parameter list.

Error 949
Syntax error at cursor

The item pointed to by the cursor is not valid in this position for this statement. See the "Keyword Dictionary"
chapter entry for the correct syntax.

Error 951
Incomplete Statement or Command

There are more required items for this statement. See the "Keyword Dictionary" chapter entry for the correct
syntax.

Error 956
Source/destination mismatch

The number of array elements do not match in the source and destination arrays.

Error 962
Programmable only

This statement may not be executed from the keyboard. It may only be stored and executed in a program.

Error 963
Command only

This statement may be executed from the keyboard only. It may not be stored or executed in a program.

Error 977
Statement or Command too complex

An expression in the statement is too complex. Either simplify the expression or split it into two or more
expressions.

Error 980
Too many symbols in context

There are too many variables, I/O Paths and labels in the program context. Break the program into two or more
SUBs or DEF FNs.

Error 985
Invalid Quoted String

The closing quote character is missing.

Error 987
Invalid Line Number

The program line number is outside the range of 1 through 4,194,304. (The HP BASIC limit was 32768.)

Error 1100
Unable to load DLL

The attempt to load the DLL specified failed. Either the DLL name given was incorrect (spelling) or The DLL is not located in the
correct directory.

Error 1101
Unable to unload DLL

The system was unable to unload the DLL.

Error 1102
DLL is already loaded

A DLL by the specified name is already loaded. The DLL may have been loaded in a previous program or some error aborted the
program before the UNLOAD command executed. It is not possible to load two DLL’s of the same name even if they have
different functions.

Error 1103
Unable to load Function

Basic was unable to load the specified function from the specified DLL. Verify that the DLL name and function names are correct.
If you’re writing your own DLL, make sure function is exported.

Error 1104
Function is already loaded

A function by that name for the specified DLL is already loaded.

Error 1105
Alias previously used

The alias specified is already being used by another loaded function. Aliases must be unique across all loaded DLL functions.

Error 1106
Invalid or no return type specified

A valid return type must be specified when doing the DLL Get. See the DLL Loader document for a list of valid return types.

Error 1107
Invalid or no DLL name specified

When doing a DLL GET, the correctly loaded DLL must be specified.

Error 1108
Insufficient Dimension for passing string by
reference

When passing a string by reference it must be dimensioned at least one byte larger than it will ever be. If the string is using all of
it’s dimensioned space you get this error.

Error 1109
Unsupported Number of Parameters

The amount of data set up as parameters exceeds the 80-byte limit.

Error 1110
Possible HTBasic Memory Corruption

When a string is passed out by reference it is possible to write a string into HTBasic memory that exceeds the maximum
dimension for the HTBasic variable. When HTBasic regains control from a Call to a DLL function that passes strings by
reference, it attempts to detect occurrences of this and returns this error if any are found.

Error 2000
Stack Overflow

The processor stack has grown beyond the available memory. This is usually caused by user defined functions that
are nested too deep.

Error 2001
Too many Open Files

HTBasic used to return 2001 for this condition. Now that HP BASIC has added error 189 for this condition, HTBasic
has been changed to return 189 for compatibility.

Error 2002
HELP file not found

The HTB.HLP file was not found in the directory specified by the environment variable "HTB=xxx", in the current
directory or in the same directory as HTB.EXE.

Error 2003
Bad Device Driver number

The CONFIGURE DEVICE statement, which returned this error, is no longer necessary and thus this error is not
currently returned by HTBasic.

Error 2004
Bad Key Function number

The key function number specified is outside the legal range. See the CONFIGURE KEY statement.

Error 2005
Illegal in Run-only Version

This error is not currently returned by HTBasic.

Error 2006
Illegal DUMP device

This error is not currently returned by HTBasic. Error 56, "File Not Found," is returned when a CONFIGURE DUMP
specifies a language for which no device driver file exists.

Error 2007
Wrong Object Type

An attempt was made to execute object code which is not suitable for the computer's processor. An HTBasic DOS
386/486 Version CSUB or BIN can not execute with the HTBasic DOS PC Version, etc.

Error 2008
May not modify CSUB

An attempt was made to change a CSUB definition.

Error 2009
Wrong Revision

The PROG or BIN file you attempted to LOAD, LOADSUB or CAT was created with an earlier release of HTBasic and
is not compatible with the current release. For 1.x/2.x PROG files, use the HT2SAVE utility (explained in the User's
Guide) to convert your PROG files to the current format. This can also be done by LOADing and SAVEing the file
with the old release of HTBasic and then GETting and STOREing the file with the new release. For old BIN files, you
must contact the supplier of the BIN file for information about upgrading.

Error 2010
May Not load driver Here

You must load all drivers from the MAIN program or as an immediate command when HTBasic is in the Idle
condition. It is recommended that PLOTTER IS, CONFIGURE DUMP and GRAPHICS INPUT IS statements to load
drivers be duplicated in the AUTOST file to insure the proper drivers are loaded before your programs begin to
execute. LOAD BIN statements should also be executed in the AUTOST file.

Error 2011
Exceeded Graphics Driver Limit

There is a limit to the number of device drivers which can be loaded with the CONFIGURE DUMP, GRAPHICS INPUT
IS and PLOTTER IS statements. You have exceeded that limit, which is 10. Use LIST BIN to see a list of the currently
loaded drivers.

Error 2012
Illegal CALL in CSUB

The CSUB attempted to CALL an interpreted SUB, which is not supported. Use "XREF sub-name : SB" to list the
SUBs called by sub-name. Then make sure they are compiled or that no interpreted SUBs of the same name exist
before the compiled SUBs.

Appendix B

ASCII Code Chart

Legend:
Center - ASCII Glyph or Mnemonic
Upper-left - Decimal
Upper-right - IEEE-488 Command or Address
Lower-left – Hexadecimal

ERROR

Six manual entries exist for ERROR.
See:

CAUSE ERROR Simulates a specified error.
CLEAR ERROR Resets all error indicators.
ERROR RETURN Returns program execution to the line following the most recent error.
ERROR SUBEXIT Returns subprogram execution to the line following the most recent error.
OFF ERROR Cancels event branches defined by ON ERROR.
ON ERROR Defines an event branch for trappable errors.

KEY

lTwelve manual entries exist for KEY.
See:

CONFIGURE KEY Assigns editor functions to keyboard keys.
EDIT KEY Puts you into softkey EDIT mode.
KEY LABELS Controls the display of the softkey labels.
KEY LABELS PEN Sets the color for the softkey labels.
LIST KEY Lists the softkey macro definitions.
LOAD KEY Loads softkey macro definitions into memory.
OFF KEY Cancels event branches defined by ON KEY.
ON KEY Defines an event branch for when a softkey is pressed.
SET KEY Defines one or more softkey macros.
READ KEY Returns one or more softkey macro definitions.
RE-STORE KEY Stores the KEY definitions in a file.
STORE KEY Stores the softkey definitions in a file.

 CONFIGURE

Twelve manual entries exist for CONFIGURE.
See:

CONFIGURE BDAT Specifies the byte order for CREATE BDAT.
CONFIGURE CREATE Specifies the kind of file header used with typed files.
CONFIGURE DIM Turns implicit variable dimensioning on or off.
CONFIGURE DUMP Specifies what graphic printer language to use for DUMP.
CONFIGURE KBD Defines keyboard mappings for character sets.
CONFIGURE KEY Assigns editor functions to keyboard keys.
CONFIGURE LABEL Defines characters for the LABEL statement.
CONFIGURE LONGFILENAMES Specifies use of long filenames.
CONFIGURE MSI Specifies HP style volume specifier translations.
CONFIGURE PRT Specifies the value of PRT.
CONFIGURE SAVE Sets the file type produced by SAVE.
CONFIGURE SYSTEM Returns the conjugate of a complex number

REAL

Two manual entries exist for REAL.
See:

REAL Reserve floating point variable and and array storage.
REAL Converts an INTEGER or COMPLEX number to REAL.

SET

Nine manual entries exist for SET.
See:

SET ALPHA MASK Determines which plane(s) can be modified by ALPHA display operations.
SET CHR Defines the bit-patterns for one or more characters.
SET DISPLAY MASK Specifies which planes can be seen on the alpha display.
SET ECHO Sets the echo location on the PLOTTER IS device.
SET KEY Defines one or more softkey macros.
SET LOCATOR Sets a new graphic locator position on the GRAPHICS INPUT IS device.
SET PEN Defines part or all of the color map.
SET TIME Sets the time of day clock.
SET TIMEDATE Sets the date and time of the computer's clock.

OFF event

Manual entries document each event separately.
See:

OFF CYCLE Cancels a repeating event branch.
OFF DELAY Cancels a single event branch after a specified number of seconds.
OFF END Cancels an event branch for end-of-file conditions.
OFF EOR Cancels an event branch for end-of-record conditions.
OFF EOT Cancels an event branch for end-of-transfer conditions.
OFF ERROR Cancels an event branch for trappable errors.
OFF EVENT Cancels event branches defined by ON EVENT.
OFF INTR Cancels a hardware interrupt initiated branch.
OFF KBD Cancels an event branch for when a key is pressed.
OFF KEY Cancels an event branch for when a softkey is pressed.
OFF KNOB Cancels an event branch for when the KNOB is turned.
OFF SIGNAL Cancels an event branch for when a SIGNAL statement is executed.
OFF TIME Cancels a single event branch for a specific time.
OFF TIMEOUT Cancels an event branch for an I/O timeout.

ON event

Manual entries document each event separately.
See:

ON Transfers control to one of a list of lines.
ON CYCLE    Defines a repeating event branch.
ON DELAY    Defines a single event branch after a specified number of seconds.
ON END Defines an event branch for end-of-file conditions.
ON EOR Defines an event branch for end-of-record conditions.
ON EOT Defines an event branch for end-of-transfer conditions.
ON ERROR    Defines an event branch for trappable errors.
ON EVENT    Defines an event branch that is taken after a widget generates that event.
ON INTR Defines a hardware interrupt initiated branch.
ON KBD Defines an event branch for when a key is pressed.
ON KEY    Defines an event branch for when a softkey is pressed.
ON KNOB    Defines an event branch for when the KNOB is turned.
ON SIGNAL    Defines an event branch for when a SIGNAL statement is executed.
ON TIME Defines a single event branch for a specific time.
ON TIMEOUT    Defines an event branch for an I/O timeout.

ON EVENT
Defines an event branch that is taken after a widget generates that event.

Syntax: ON EVENT

where: action = { GOTO|GOSUB|RECOVER } line | CALL subprogram
line = line-number | line-label

Sample: ON EVENT @Pushbutton_3,"ACTIVATED" GOSUB Clear_profile
ON EVENT @Slider, “DONE” GOSUB Change_temphigh
ON EVENT @Sldr,"CHANGED", VAL(SYSTEM$(“SYSTEM PRIORITY”))
+1 GOSUB Chg_stpnt

Description:

The ON EVENT statement not only sets up the ON EVENT branch, but also enables the event.

The most recent ON EVENT (or OFF EVENT) statement for a given widget and event combination overrides
any previous ON EVENT definition for that combination. If the overriding ON EVENT definition occurs in a
context different from the one in which the overridden ON EVENT occurs, the overridden ON EVENT is restored
when the calling context is restored.

Any specified line reference for GOTO or GOSUB must be in the same context as the ON EVENT statement.
CALL and GOSUB will return to the next line that would have been executed if the ON EVENT widget event had
not been serviced. The system priority is restored to that which existed before the ON EVENT branch was
taken.

RECOVER forces the program to go directly to the specified line in the context containing that ON EVENT
statement. When RECOVER forces a change of context, the system priority is restored to that which existed in
the original (defining) context at the time that context was exited.

NOTE
The priority specified in the ON EVENT statement (as in all ON-event statements) must be higher than the
current system priority in order for the event to be recognized.

When you nest ON EVENT statements, be aware that the system priority is raised to the one you specified in
the ON EVENT statement, when that event is serviced for CALL and GOSUB.

To ensure that the events are recognized for all of your ON EVENT statements, specify a higher priority each
time you go deeper into the nesting. To do this, query for the current system priority and then increase it by one,
instead of specifying the priority as a number between the event name and GOTO, GOSUB, RECOVER, or
CALL.

Use the following command sequence within the ON EVENT statement
to do this. (This technique will cause an error if the current system priority is 15.)

 VAL(SYSTEM$(“SYSTEM PRIORITY”))+1

CALL and RECOVER remain active when the context changes to a subprogram or function, unless the change
in context is caused by a keyboard-originated call. GOSUB and GOTO remain active when the context changes
to a subprogram, but the branch cannot be taken until the calling context is restored.

ON EVENT is disabled by DISABLE EVENT or DISABLE, is re-enabled
by ENABLE EVENT or ENABLE, and is deactivated by OFF EVENT.

See Also:

DISABLE, DISABLE EVENT, ENABLE, ENABLE EVENT, OFF EVENT

Chapter 3
 Statement Summary

The following table lists all the HTBasic keywords and indicates which statements can be executed from the
keyboard, stored in a program, and included in an IF...THEN statement.

Letter Meaning                               
K Keyboard executable
P Programmable
I Legal in an IF...THEN

ABORT KPI
ABORTIO KPI
ABS KPI
ACS KPI
ACSH KPI
ALLOCATE KPI
ALPHA KPI
ALPHA HEIGHT KPI
ALPHA PEN KPI
AND KPI
AREA KPI
ARG KPI
ASN KPI
ASNH KPI
ASSIGN KPI
ATN KPI
ATN2 KPI
ATNH KPI
AXES KPI
BASE KPI
BEEP KPI
BINAND KPI
BINCMP KPI
BINEOR KPI
BINEQV KPI
BINIMP KPI
BINIOR KPI
BIT KPI
BREAK KPI
CALL KPI
CASE -P-
CAT KPI
CAUSE KPI
CHANGE K--
CHECKREAD KPI
CHGRP KPI
CHOWN KPI
CHR$ KPI
CHRX KPI
CHRY KPI

CINT KPI
CLEAR KPI
CLEAR ERROR -PI
CLEAR LINE KPI
CLEAR SCREEN KPI
CLIP KPI
CLS KPI
CMPLX KPI
COM -P-
COMMAND$ KPI
COMPLEX -P-
CONFIGURE KPI
CONJG KPI
CONT K--
CONTROL KPI
COPY KPI
COPYLINES K--
COS KPI
COSH KPI
CREATE KPI
CREATE ASCII KPI
CREATE BDAT KPI
CREATE DIR KPI
CRT KPI
CSIZE KPI
CSUB ---
DATA -P-
DATE KPI
DATE$ KPI
DEALLOCATE KPI
DEF FN -P-
DEG KPI
DEL K--
DELSUB KPI
DET KPI
DIALOG KPI
DIGITIZE KPI
DIM -P-
DISABLE KPI
DISABLE EVENT KPI
DISABLE INTR KPI
DISP KPI
DISPLAY FUNCTIONS KPI
DIV KPI
DLL GET KPI
DLL LOAD KPI
DLL READ KPI
DLL UNLOAD KPI
DLL WRITE KPI

DOT KPI
DRAW KPI
DROUND KPI
DUMP KPI
DUMP DEVICE IS KPI
DVAL KPI
DVAL$ KPI
EDIT K--
EDIT KEY K--
ELSE -P-
ENABLE KPI
ENABLE EVENT KPI
ENABLE INTR KPI
END -P-
ENTER KPI
ENVIRON$ KPI
ERRL -PI
ERRLN KPI
ERRM$ KPI
ERRN KPI
ERROR -PI
EXECUTE string KPI
EXIT IF -P-
EXOR KPI
EXP KPI
FIND K--
FIX KPI
FN KPI
FNEND -P-
FOR -P-
FRACT KPI
FRAME KPI
FRE KPI
GCLEAR KPI
GESCAPE KPI
GET KPI
GFONT IS KPI
GINIT KPI
GLOAD KPI
GOSUB -PI
GOTO -PI
GRAPHICS KPI
GRAPHICS INPUT IS KPI
GRID KPI
GSEND KPI
GSTORE KPI
HELP K--
IDRAW KPI
IF -P-

IMAG KPI
IMAGE -P-
IMOVE KPI
INDENT K--
INITIALIZE KPI
INMEM KPI
INP KPI
INPUT -PI
INPW KPI
INT KPI
INTEGER -P-
IPLOT KPI
IVAL KPI
IVAL$ KPI
KBD KPI
KBD CMODE KPI
KBD LINE PEN KPI
KBD$ KPI
KEY LABELS KPI
KEY LABELS PEN KPI
KNOBX KPI
KNOBY KPI
LABEL KPI
LDIR KPI
LEN KPI
LET KPI
LEXICAL ORDER IS KPI
LGT KPI
LINE TYPE KPI
LINK KPI
LINPUT -PI
LIST KPI
LIST BIN KPI
LIST DLL KPI
LIST KEY KPI
LOAD KPI
LOAD BIN KPI
LOAD KEY KPI
LOADSUB KPI
LOCAL KPI
LOCAL LOCKOUT KPI
LOCK KPI
LOG KPI
LONG -P-
LOOP -P-
LORG KPI
LWC$ KPI
MASS STORAGE IS KPI
MAT KPI

MAT REORDER KPI
MAT SEARCH KPI
MAT SORT KPI
MAX KPI
MAXLEN KPI
MAXREAL KPI
MERGE ALPHA KPI
MIN KPI
MINREAL KPI
MOD KPI
MODULO KPI
MOVE KPI
MOVELINES K--
MSI KPI
NEXT -P-
NOT KPI
NPAR KPI
NUM KPI
ON---GOTO/GOSUB -PI
ON/OFF CDIAL -PI
ON/OFF CYCLE -PI
ON/OFF DELAY -PI
ON/OFF END -PI
ON/OFF EOR -PI
ON/OFF EOT -PI
ON/OFF ERROR -PI
ON/OFF EVENT -PI
ON/OFF INTR -PI
ON/OFF KBD -PI
ON/OFF KEY -PI
ON/OFF KNOB -PI
ON/OFF SIGNAL -PI
ON/OFF TIME -PI
ON/OFF TIMEOUT -PI
OPTION BASE -P-
OR KPI
OUT KPI
OUTPUT KPI
OUTW KPI
PASS CONTROL KPI
PAUSE KPI
PDIR KPI
PEN KPI
PENUP KPI
PERMIT KPI
PI KPI
PIVOT KPI
PLOT KPI
PLOTTER IS KPI

POLYGON KPI
POLYLINE KPI
POS KPI
PPOLL KPI
PRINT KPI
PRINT LABEL KPI
PRINT PEN KPI
PRINTALL IS KPI
PRINTER IS KPI
PROTECT KPI
PROUND KPI
PRT KPI
PURGE KPI
QUIT KPI
RAD KPI
RANDOMIZE KPI
RANK KPI
RATIO KPI
RE-SAVE KPI
RE-STORE KPI
RE-STORE KEY KPI
READ KPI
READ KEY KPI
READ LABEL KPI
READ LOCATOR KPI
READIO KPI
REAL -P-
REAL() KPI
RECTANGLE KPI
REDIM KPI
REM -P-
REMOTE KPI
REN K--
RENAME KPI
REPEAT -P-
REQUEST KPI
RES KP-
RESET KPI
RESTORE -PI
RESUME KPI
RETURN -PI
REV$ KPI
RND KPI
ROTATE KPI
RPLOT KPI
RPT$ KPI
RUN K--
RUNLIGHT KPI
SAVE KPI

SC KPI
SCRATCH A/ALL K--
SCRATCH B/BIN K--
SCRATCH C/COM K--
SCRATCH KEY K--
SCRATCH R/RECALL K--
SECURE K--
SELECT -P-
SEND KPI
SEPARATE ALPHA KPI
SET ALPHA MASK KPI
SET CHR KPI
SET DISPLAY MASK KPI
SET ECHO KPI
SET KEY KPI
SET LOCATOR KPI
SET PEN KPI
SET TIME KPI
SET TIMEDATE KPI
SGN KPI
SHIFT KPI
SHOW KPI
SIGNAL KPI
SIN KPI
SINH KPI
SIZE KPI
SOUND KPI
SPOLL KPI
SQR KPI
SQRT KPI
STATIC -P-
STATUS KPI
STATUS() KPI
STOP KPI
STORE KPI
STORE KEY KPI
STORE SYSTEM K--
SUB -P-
SUBEND -P-
SUBEXIT -PI
SUM KPI
SUSPEND KPI
SYMBOL KPI
SYSTEM KEYS KPI
SYSTEM PRIORITY KPI
SYSTEM$ KPI
TAN KPI
TANH KPI
TIME KPI

TIME$ KPI
TIMEDATE KPI
TIMEZONE IS KPI
TRACE KPI
TRACK KPI
TRANSFER KPI
TRIGGER KPI
TRIM$ KPI
UNLOCK KPI
UNTIL -P-
UPC$ KPI
USER KEYS KPI
VAL KPI
VAL$ KPI
VIEWPORT KPI
WAIT KPI
WAIT FOR EOR KPI
WAIT FOR EOT KPI
WAIT FOR EVENT KPI
WHERE KPI
WHILE -P-
WILDCARDS KPI
WINDOW KPI
WRITEIO KPI
XREF K--

Default FORMAT Chart
Target ASSIGN (no

FORMAT option)
ASSIGN; FORMAT
ON

ASSIGN; FORMAT
OFF

ASSIGN; FORMAT
LSB FIRST

ASSIGN; FORMAT
MSB FIRST

Ordinary file Ordinary * Binary Ordinary ASCII Ordinary * Binary Ordinary LSB
Binary

Ordinary MSB
Binary

ASCII File LIF ASCII LIF ASCII LIF ASCII LIF ASCII LIF ASCII

BDAT File BDAT †    Binary BDAT ASCII BDAT †    Binary BDAT LSB Binary BDAT MSB Binary

Device ASCII ASCII MSB Binary LSB Binary MSB Binary

BUFFER ASCII ASCII * Binary LSB Binary MSB Binary

String ‡

† The byte order used with a BDAT file is established when the file is created and FORMAT OFF
should be used to specify binary data. CONFIGURE BDAT is used to set the byte order for CREATE
BDAT.

‡ Although you can't ASSIGN to a non-BUFFER string, you can OUTPUT/ENTER to any string. In
these cases, the format is always ASCII.

* The native byte order for the computer is used. Using the native byte order for a computer
results in faster throughput.

ABORT EXAMPLE

10 CLEAR SCREEN
20 RESET 7
30 PRINT STATUS(7,3) ! 213 indicates active system controller at address
21
40 PASS CONTROL 720 ! pass control to another machine with notsys
50 WAIT .1
60 PRINT STATUS(7,3) ! 149 indicates system controller but not active
controller
70 ABORT 7 ! should restore system controller status
80 PRINT STATUS(7,3) ! 213 indicates active system controller at address
21
90 END

ABORTIO Example

10 DIM Buff$[2000] BUFFER
20 CLEAR SCREEN
30 PRINT "*** ABORTIO TEST ****"
40 PRINT
50 PRINT
60 PRINT " Press F1 to cause an ABORTIO"
70 ASSIGN @Test TO BUFFER [50]
80 ASSIGN @In TO 9
90 TRANSFER @In TO @Test
100 I=0
110 LOOP
120 WAIT .1
130 ON KEY 1 GOTO 150
140 GOTO 160
150 ABORTIO @In
160 IF (STATUS(@Test,10))=64 THEN
170 DISP "Transfer status is: Active"
180 ELSE
190 DISP "Transfer status is: Inactive"
191 GOTO 230
200 END IF
210 I=I+1
220 END LOOP
230 END

ABS EXAMPLE

10 CLEAR SCREEN
20 X=-7
30 PRINT "The absolute value of ";X;"is:";ABS(X) !Takes the absolute value.
40 PRINT
50 COMPLEX C
60 A=4
70 B=3
80 C=CMPLX(A,B)
90 PRINT "The magnitude of the complex number:";A;"+";B;"i"
100 PRINT "is:";ABS(C) !Takes the magnitude of the complex number.
110 END

ACS EXAMPLE

10! Test triangle leg 1 = 3 units, leg 2 = 4 units, hyp. = 5
20! units. Find the
30! angle between leg 2 and hyp. /|
40! 5 / |3
50! / |
60! -----
70! 4
80! The ACS function returns the angle between, in this case
90! leg 2 and the hyp. Take the adjacent leg (4) over the
100! hyp. (5) -- which is the cosine. ACS is the opposite
110! of COS.
120 CLEAR SCREEN
130 PRINT "The angle, using arccosine function."
140 RAD
150 PRINT "is";ACS(4/5);"radians."
160 DEG
170 PRINT "or";ACS(4/5);"degrees."
180 END

ACHS EXAMPLE

10 COMPLEX C
20 C=CMPLX(4,7)
30 CLEAR SCREEN
40 X=ACSH(C)
50 Y=LOG(C+CMPLX(0,1)*SQR(1-C^2))
60 PRINT X;"=";Y;"?"
70 IF X=Y THEN
80 PRINT "True"
90 ELSE
100 PRINT "False"
110 END IF
120 END

ALLOCATE EXAMPLE

10 CLEAR SCREEN
20 PRINT "Total Memory "&SYSTEM$("AVAILABLE MEMORY")
30 PRINT "***ALLOCATE TEST #4***"
40 ALLOCATE A$[32000],B(1000),INTEGER C(10)
50 PRINT "Memory after allocation "&SYSTEM$("AVAILABLE MEMORY")
60 DEALLOCATE A$,C(*),B(*)
70 PRINT "Memory freed "&SYSTEM$("AVAILABLE MEMORY")
80 ALLOCATE A$[32000],B(1000)
90 PRINT "Memory allocated without the integer array "&SYSTEM$("AVAILABLE
MEMORY")
100 PRINT
110 PRINT "Memory before SUB call "&SYSTEM$("AVAILABLE MEMORY")
120 PRINT "Calling SUB..."
130 Yahoo
140 PRINT "Memory after SUB call "&SYSTEM$("AVAILABLE MEMORY")
150 PRINT
160 ALLOCATE Str$[90]
170 PRINT "Memory after allocated string "&SYSTEM$("AVAILABLE MEMORY")
180 ALLOCATE REAL D(8)
190 PRINT "Memory after allocated REAL array "&SYSTEM$("AVAILABLE MEMORY")
200 END
210 !
220 SUB Yahoo
230 PRINT "Memory in SUB call "&SYSTEM$("AVAILABLE MEMORY")
240 ALLOCATE COMPLEX Y(4)
250 PRINT "Memory after allocation of COMPLEX array "&SYSTEM$("AVAILABLE
MEMORY")
260 SUBEND

ALPHA HEIGHT EXAMPLE

10 CLEAR SCREEN
20 ALPHA HEIGHT 10! error in documentation
30 FOR Loop=1 TO 30
40 PRINT Loop
50 NEXT Loop
60 PRINT "Paused...",STATUS(CRT,3) !Get the # of lines in the extended
output area.
70 PAUSE
80 DISP "Test complete"
90 ALPHA HEIGHT ! return to normal
100 END

ALPHA PEN EXAMPLE

10 PLOTTER IS CRT,"INTERNAL";COLOR MAP !Turn on color map mode.
20 CLEAR SCREEN
30 FOR Loop=0 TO 15
40 ALPHA PEN Loop !This prints out the ALPHA PEN # in its proper
color.
50 PRINT Loop
60 NEXT Loop
70 PRINT "Test complete"
80 END

AND EXAMPLE

10 DATA 0,0,0,1,1,0,1,1
20 RESTORE
30 CLEAR SCREEN
40 PRINT "AND test"
50 PRINT " J"," K","J AND K"
60 FOR L=1 TO 4
70 READ J,K !Reads in the DATA values into J and K.
80 PRINT J,K,J AND K !Performs the AND operation, then prints it out.
90 NEXT L
100 END

AREA COLOR EXAMPLE

10 GINIT
20 GCLEAR
30 PLOTTER IS CRT,"INTERNAL";COLOR MAP
40 WINDOW 0,1.31,1.31,0
50 FOR L=0 TO 1 STEP .2
60 FOR H=0 TO 1 STEP 1/6
70 FOR S=0 TO 1 STEP .2
80 AREA COLOR H,S,L
90 MOVE H+.11*L,S+.11*L
100 RECTANGLE .09,.1,FILL,EDGE
110 NEXT S
120 NEXT H
130 NEXT L
140 LORG 7
150 MOVE 1.2,1.31
160 LABEL "z = Luminosity"
170 LORG 4
180 MOVE .6,1.31
190 LABEL "x = Hue"
200 LDIR PI/2
210 MOVE 1.31,.6
220 LABEL "y = Saturation"
230 END

AREA PEN EXAMPLE

10 GINIT
20 GCLEAR
30 PLOTTER IS CRT,"INTERNAL";COLOR MAP !Set it to color map mode.
40 MOVE 40,40
50 FOR L=1 TO 40
60 AREA PEN L !Show the different AREA PEN colors.
70 RECTANGLE 90,30,FILL,EDGE
80 LABEL L;
90 MOVE 40,40
100 WAIT 1
110 GCLEAR
120 NEXT L
130 END

ARG EXAMPLE

10 ! The ARG function returns the ANGLE of a complex number.
20 ! This program computes the angle and compares it with the result of
ARG.
30 DEG
40 CLEAR SCREEN
50 COMPLEX A
60 A=CMPLX(3,4)
70 Mag=ABS(A)
80 Angle=ARG(A)
90 X=Mag*COS(Angle)
100 Y=Mag*SIN(Angle)
110 PRINT "Complex number a + bi: ";A
120 PRINT "Magnitude: ";Mag,"Angle: ";Angle
130 PRINT "Your complex number was: ";X;"+";Y;"i"
140 END

ASN EXAMPLE

10! Test triangle leg 1 = 3 units, leg 2 = 4 units, hyp. = 5
20! units. Find the
30! angle between leg 2 and hyp. /|
40! 5 / |3
50! / |
60! -----
70! 4
80! The ASN function returns the angle between, in this case
90! leg 2 and the hyp. Take the opposite leg (3) over the
100! hyp. (5) -- which is the sine. ASN is the opposite
110! of SIN.
120 CLEAR SCREEN
130 PRINT "The angle, using arcsine function."
140 RAD
150 PRINT "is";ASN(3/5);"radians."
160 DEG
170 PRINT "or";ASN(3/5);"degrees."
180 END

ASNH EXAMPLE

10 COMPLEX C
20 C=CMPLX(4,7)
30 CLEAR SCREEN
40 X=ASNH(C) !Takes the hyperbolic arcsine of complex number C.
50 Y=LOG(C+SQR(C^2+1)) !Uses the mathematical approach to the hyperbolic
arcsine.
60 PRINT X;"=";Y;"?"
70 IF X=Y THEN !Compare X and Y to verify ASNH.
80 PRINT "True"
90 STOP
100 ELSE
110 PRINT "False"
120 END IF
130 END

ASSIGN EXAMPLE

10 ON ERROR GOTO 50
20 CLEAR SCREEN
30 PRINT "*** output TEST ****"
40 PURGE "test.txt"
50 CREATE "test.txt",0
60 ASSIGN @File TO "test.txt";FORMAT ON
70 A$="This is a test."
80 OUTPUT @File;A$
90 RESET @File
100 ENTER @File;Test$
110 ASSIGN @File TO *
120 IF A$=Test$ THEN
130 PRINT "Test passed."
140 PURGE "test.txt"
150 ELSE
160 PRINT "Test failed."
170 PRINT "Output string did not equal input string."
180 END IF
190 END

ATN EXAMPLE

10! Test triangle leg 1 = 3 units, leg 2 = 4 units, hyp. = 5
20! units. Find the
30! angle between leg 2 and hyp. /|
40! 5 / |3
50! / |
60! -----
70! 4
80! The ATN function returns the angle between, in this case
90! leg 2 and the hyp. Take the opposite leg (3) over the
100! adjasent (4) -- which is the tangent. ATN is the opposite
110! of TAN.
120 CLEAR SCREEN
130 PRINT "The angle, using arctangent function."
140 RAD
150 PRINT "is";ATN(3/4);"radians."
160 DEG
170 PRINT "or";ATN(3/4);"degrees."
180 END

ATNH EXAMPLE

10 COMPLEX C
20 C=CMPLX(4,7)
30 CLEAR SCREEN
40 X=ATNH(C) !Returns the hyperbolic arctangent of a complex
number.
50 Y=1/2*LOG((1+C)/(1-C)) !Performs the mathematical value for hyperbolic
arctangent.
60 PRINT X;"=";Y;"?"
70 IF X=Y THEN !Verifies ATNH function.
80 PRINT "True"
90 ELSE
100 PRINT "False"
110 END IF
120 END

ATN2 EXAMPLE

10 !ATN2 returns the angle of the vector from the origin to a point.
20 !In this case, -4 is the y-value and 3 is the x-value.
30 CLEAR SCREEN
40 PRINT ATN2(-4,3)
50 END

AXES EXAMPLE

10 KEY LABELS OFF
20 CLEAR SCREEN
30 AXES
40 PRINT "Default Axes"
50 Holdit
60 AXES 5
70 PRINT "Ticks on X axes"
80 Holdit
90 AXES 5,5 !X,Y tick spacing.
100 PRINT "with 5,5 tick spacing"
110 Holdit
120 AXES 5,5,20
130 PRINT "X origin at 20"
140 Holdit
150 AXES 5,5,20,20 !20,20 is the X,Y origin of axis on the screen.
160 PRINT "X and Y Origins at 20,20"
170 Holdit
180 AXES 2,5,20,20,5
19 PRINT "X tick spacking 2 Y tick spacing 5, Origin at 20,20 major tick
size 5"
200 Holdit
210 AXES 2,2,20,20,5,5 !5,5 is the spacing of major ticks on X and Y
axis.
220 PRINT "5,5 major tick spacing"
230 Holdit
240 AXES 2,2,20,20,5,5,2 !2 is the size of major ticks.
250 PRINT "Major tick size of 2"
260 KEY LABELS ON
270 END
280 SUB Holdit
290 PRINT TABXY(50,50);"Press Continue"
300 PAUSE
310 CLEAR SCREEN
320 DISP
330 SUBEND

BASE EXAMPLE

10 OPTION BASE 1
20 DIM A(16,6)
30 CLEAR SCREEN
40 Pass_a(A(*))
50 PRINT "After REDIM"
60 REDIM A(7,3)
70 Pass_a(A(*))
80 END
90 SUB Pass_a(REAL A(*))
100 L=RANK(A)
110 PRINT "The array passed in, has the following dimensions."
120 PRINT "Rank: ";L
130 PRINT "Base: ";BASE(A,L)
140 PRINT "Size: ";SIZE(A,L)
15 SUBEND

BDAT EXAMPLE

10 CLEAR SCREEN
20 CREATE BDAT "stuff1.BDT",67 !Create a BDAT file.
30 CREATE BDAT "stuff2.BDT",67,78 !Create a BDAT file.
40 CAT "*.BDT" !Make sure the files were created.
50 PRINT "Press CONTINUE to purge files..."
60 PAUSE
70 PURGE "stuff1.BDT"
80 PURGE "stuff2.BDT"
81 CAT "*.BDT"
90 END

BEEP EXAMPLE

10 CLEAR SCREEN
20 BEEP
30 PRINT "*** BEEP test ***"
40 Duration=.01
50 FOR Frequency=81 TO 5208 STEP 10
60 BEEP Frequency, Duration !Test BEEP at different frequencies.
70 NEXT Frequency
80 PRINT "Done."
90 END

BIN EXAMPLE

10 CLEAR SCREEN
20 LIST BIN !List the binaries loaded in your computer.
30 END

BINAND EXAMPLE

10 INTEGER X,Y,Z
20 X=12
30 Y=6
40 Z=BINAND(X,Y) !Do a binary AND of X and Y.
50 PRINT X;" & ";Y
60 See(Z)
70 END
80 SUB See(INTEGER X)
90 FOR Loop=15 TO 0 STEP -1
100 Temp=BIT(X,Loop) !Print out the answer in bits.
110 PRINT Temp;
120 NEXT Loop
130 SUBEND

BINCMP EXAMPLE

10 INTEGER X,Y
20 X=13
30 Y=BINCMP(X) !Binary Complement of X.
40 PRINT "Compliment of X"
50 See(Y)
60 END
70 SUB See(INTEGER X)
80 FOR Loop=15 TO 0 STEP -1
90 Temp=BIT(X,Loop)
100 PRINT Temp;
110 NEXT Loop
120 SUBEND

BINEOR EXAMPLE

10 INTEGER X,Y
20 X=12
30 Y=BINEOR(X,6) !Binary EXOR of X and 6.
40 PRINT "X EXOR 6"
50 See(Y)
60 END
70 SUB See(INTEGER X)
80 FOR Loop=15 TO 0 STEP -1
90 Temp=BIT(X,Loop)
100 PRINT Temp;
110 NEXT Loop
120 SUBEND

BINEQV EXAMPLE

10 INTEGER X,Y
20 X=12
30 Y=BINEQV(X,6) !Performs a bit by bit equivalence operation.
40 PRINT "Equivalence test"
50 See(Y)
60 END
70 SUB See(INTEGER X)
80 FOR Loop=15 TO 0 STEP -1
90 Temp=BIT(X,Loop)
100 PRINT Temp;
110 NEXT Loop
120 SUBEND

BINIMP EXAMPLE

10 INTEGER X,Y
20 X=12
30 Y=BINIMP(X,6) !Performs a bit by bit implication operation.
40 PRINT "Implication test"
50 See(Y)
60 END
70 SUB See(INTEGER X)
80 FOR Loop=15 TO 0 STEP -1
90 Temp=BIT(X,Loop)
100 PRINT Temp;
110 NEXT Loop
120 SUBEND

BINIOR EXAMPLE

10 INTEGER X,Y
20 X=12
30 Y=BINIOR(X,6) !Performs an OR operation of 12 and 6.
40 PRINT "12 OR 6"
50 See(Y)
60 END
70 SUB See(INTEGER X)
80 FOR Loop=15 TO 0 STEP -1
90 Temp=BIT(X,Loop)
100 PRINT Temp;
110 NEXT Loop
120 SUBEND

BIT EXAMPLE

10 INTEGER X
20 X=12
30 PRINT "The bits for ";X;":"
40 See(X)
50 END
60 SUB See(INTEGER X)
70 FOR Loop=15 TO 0 STEP -1
80 Temp=BIT(X,Loop)
90 PRINT Temp;
100 NEXT Loop
110 SUBEND

BREAK EXAMPLE

Assumes two com ports connected via null modem cable.

FOR COM2

10 ! LOAD BIN "SERIAL32;DR 2 DIS"
20 LOOP
30 PRINT STATUS (11,10) ! WILL BE 96 WHEN IDLE
40 IF BIT(STATUS (11,1),4) THEN GOTO 60
50 END LOOP
60 PRINT "BREAK" ! Break Detected
70 END

FOR COM1

10 ! LOAD BIN "SERIAL32; DR 1 DIS"
20 CONTROL 9,1;1 ! SENDS 400 MS BREAK
30 END

BUFFER EXAMPLE

10 CLEAR SCREEN
20 PRINT "*** Assign Buffer TEST ****"
30 ASSIGN @Test TO BUFFER [2000]
40 A$="This is a test."
50 OUTPUT @Test;A$!Output to the Buffer string.
60 ENTER @Test;Msg$!Enter from the Buffer string.
70 IF A$=Msg$ THEN PRINT "Test passed."
80 PRINT "All done."
90 END

BYTE EXAMPLE

10 CLEAR SCREEN
20 PRINT "*** output TEST ****"
30 CREATE "test.txt",0
40 ASSIGN @File TO "test.txt";BYTE !Send the data out as 8-bit bytes.
50 A$="This is a test."
60 OUTPUT @File;A$
61 RESET @File
70 ENTER @File;Test$
80 IF A$=Test$ THEN PRINT "Test passed."
90 ASSIGN @File TO *
100 PURGE "test.txt"
110 END

CALL EXAMPLE

10 CLEAR SCREEN
20 CALL Msg("Hello world",1) !These parameters will be passed down to the
SUB.
30 Msg("This is line two",2)
40 CALL "Msg" WITH ("Line three",3)
50 END
60 SUB Msg(Msg$,INTEGER X)
70 PRINT PEN X
80 PRINT Msg$
90 SUBEND

CASE EXAMPLE

10 CLEAR SCREEN
20 INPUT "Please enter your age:",Age
30 SELECT Age
40 CASE <1,>100
50 PRINT "Congratulations - Movie is free!"
60 CASE <12
70 Price=2.00
80 CASE 12 TO 59
90 Price=6.50
100 CASE 60
110 PRINT "Special movie rate"
120 Price=3.00
130 CASE ELSE
140 Price=4.50
150 END SELECT
160 Image: IMAGE "Movie price is $", D.2D
170 PRINT USING Image;Price
180 End: END

CAT EXAMPLE

10 DIM Files$(80)[80]
20 CONFIGURE LONGFILENAMES OFF
25 CONFIGURE LONGCATDATES OFF
30 Directory$="C:\"
40 CLEAR SCREEN
50 PRINT "Major CAT test program instructions: "
60 PRINT
70 PRINT
80 PRINT "Type CONT to continue"
90 PRINT "when paused."
100 DISP "*** Cat TEST ****"
110 New("Regular CAT")
120 CAT Directory$
130
140 New("CAT to printer")
150 CAT Directory$ TO #10 !CAT to the Windows default printer.
160 PRINTER IS CRT
170
180 CAT Directory$;NO HEADER !CAT without the header.
190
200 New("Just the file names")
210 CAT Directory$;NAMES !CAT the names of the files only.
220
230 New("Extend option")
240 CAT Directory$;EXTEND !CAT with the EXTEND option to suppress the
SRM format.
250
260 New("Long file names")
270 CONFIGURE LONGFILENAMES ON
280 CAT Directory$!CAT with longfilenames on.
290 CONFIGURE LONGFILENAMES OFF
300
310 New("CAT *.txt files.")
320 CAT Directory$&"*.txt" !Look for only the files with *.txt
extensions.
330
340 New("CAT *.txt to string test")
350 CAT Directory$&"*.txt" TO Files$(*) !CAT to a file.
360 PRINT "The first 10 text files in "&Directory$
370 FOR Loop=1 TO 10
380 PRINT Loop,File$(Loop)
390 NEXT Loop

400
410 New("Number of files")
420 CAT Directory$;NAMES,COUNT Count !Find the number of files in the
directory.
430 PRINT "The number of files in "&Directory$&" is";Count
440
450 New("CAT the file names, skiping the first 10")
460 CAT Directory$;NAMES,SKIP 10 !CAT skipping the first ten files.
470
480 New("Files that start with 'T'")
490 CAT Directory$;SELECT "T" !CAT only the files starting with T.
500 New("Test complete")
510 END
520 SUB New(Msg$)
530 PAUSE
540 CLEAR SCREEN
550 DISP Msg$
560 SUBEND

CAUSE ERROR EXAMPLE

10 CLEAR SCREEN
20 ON ERROR RECOVER Here
30 PRINT "Calling Force error SUB."
40 Force_error
50 PRINT "If it reaches here, it didn't work."
60 Here: PRINT "It works!"
70 END
80 !
90 SUB Force_error
100 PRINT "Forcing error 1"
110 CAUSE ERROR 1
120 SUBEND

CD EXAMPLE

10 ! Comments: MASS STORAGE IS, MSI, CD work good. Both MSI
20 ! and CD convert to MASS STORAGE IS.
30 ON ERROR CALL Testerror
40 CLEAR SCREEN
50 PRINT "*** CD or MSI TEST ****"
60 PRINT "Current directory is: ";SYSTEM$("MSI")
70 PRINT "Changing directory to C:\"
80 MASS STORAGE IS "C:\"
90 PRINT "MSI: ",SYSTEM$("MSI")
100 PRINT "Changing directory to D:\"
110 MASS STORAGE IS "D:\"
120 PRINT "MSI: ",SYSTEM$("MSI")
130 PRINT "Test passed."
140 END
150 SUB Testerror ! Error Handler for
160 PRINT "* Error: ";ERRN ! unexpected test program errors.
170 STOP
180 SUBEND

CHR$ EXAMPLE

10 CLEAR SCREEN
20 DISPLAY FUNCTIONS ON !Make sure you can see all the characters.
30 FOR Loop=0 TO 255
40 DISP Loop;
50 PRINT CHR$(Loop); !Display all the different characters.
60 NEXT Loop
70 PRINT CHR$(128)
80 PRINT CHR$(136)
90 END

CHRX EXAMPLE

10 PRINT CHRX,CHRY,RATIO !Width and height of the characters.
20 END !RATIO returns the ratio of the x-y axis.

CHRY EXAMPLE

10 PRINT CHRX,CHRY,RATIO !Returns the width and height of the character
font used.
20 END !RATIO returns the ratio of the x-y axis.

CINT EXAMPLE

10 DATA 2.6, 2.2, -2.2, -2.6
20 RESTORE
30 CLEAR SCREEN
40 PRINT "Variable value conversion test"
50 PRINT "Value","CINT(X)","FIX(X)","INT(X)"
60 FOR L=1 TO 4
70 READ X
80 PRINT X,CINT(X),FIX(X),INT(X)
90 NEXT L
100 END

CLEAR EXAMPLE

10 ! Use bus analyzer to verify commands; response is device specific
20 RESET 7
30 PAUSE
40 CLEAR 720
50 END

CLEAR ERROR EXAMPLE

10 CLEAR SCREEN
20 ON ERROR RECOVER Here
30 Force_error
40 Here: !
50 PRINT "The error received was:"
60 PRINT ERRM$
70 CLEAR ERROR
80 PRINT "Error Cleared"
90 PRINT "If another error message appears, the test failed."
100 END
110
120 SUB Force_error
130 PRINT SYSTEM$("HTBasic")!gives error 401
140 SUBEND

CLEAR LINE EXAMPLE

10 OUTPUT KBD;"I can clear this line with CLEAR LINE.";
20 WAIT 3
30 CLEAR LINE !This clears the input line.
40 END

CLEAR SCREEN EXAMPLE

10 PRINT "I can clear the screen."
20 AREA PEN 6
30 MOVE 30,30
40 RECTANGLE 20,20,FILL
50 MOVE 50,50
60 AREA PEN 4
70 POLYGON 20,FILL
80 WAIT 2
90 CLEAR SCREEN
100 END

CLIP EXAMPLE

10 GINIT
20 CLEAR SCREEN
30 AREA PEN 4
40 CLIP 10,25,5,15
50 RECTANGLE 40,40,FILL
60 WAIT 2
70 PRINT "Now we will turn off the clip"
80 WAIT 2
90 CLIP OFF
100 RECTANGLE 40,40,FILL
110 END

CLS EXAMPLE

10 GINIT
20 CLEAR SCREEN
30 AREA PEN 4
40 CLIP 10,25,5,15
50 RECTANGLE 40,40,FILL
60 WAIT 2
70 PRINT "Now we will turn off the clip"
80 WAIT 2
90 CLIP OFF
100 RECTANGLE 40,40,FILL
110 END

CMPLX EXAMPLE

10 CLEAR SCREEN
20 COMPLEX A,B(1:10)
30 A=CMPLX(2,1) !Makes a complex number 2+i.
40 FOR X=1 TO 10
50 B(X)=CMPLX(X,X/(-4)) !Makes various complex numbers depending on
loop.
60 PRINT B(X)
70 NEXT X
80 PRINT A
90 END

COLOR EXAMPLE

10 GINIT
20 PLOTTER IS CRT,"INTERNAL";COLOR MAP
30 AREA COLOR .8,.8,.8 !Change the FILL color
40 RECTANGLE 45,45,FILL,EDGE
50 MOVE 30,30
60 AREA COLOR .2,.9,.5 !Change the FILL color
70 RECTANGLE 45,45,FILL,EDGE
80 END

COM EXAMPLE

10 COM A$[20],Number
20 COM /Test/B$[40],Counter
30 A$="Hello"
40 B$="World"
50 Number=7
60 Counter=78
70 CLEAR SCREEN
80 PRINT "In main"
90 PRINT "A$=";A$,"Number=";Number
100 PRINT "B$=";B$,"Counter=";Counter
110 Subit
111 PRINT
120 PRINT "If SUB and MAIN variables are equal, then test passes."
150 END
160 SUB Subit
170 COM A$,Number
180 COM /Test/B$,Counter
181 PRINT
190 PRINT "In SUB"
200 PRINT "A$=";A$,"Number=";Number
210 PRINT "B$=";B$,"Counter=";Counter
220 Number=2
230 SUBEND

COMMAND$ EXAMPLE

10 CLEAR SCREEN
20 PRINT COMMAND$
30 END

COMPLEX EXAMPLE

10 CLEAR SCREEN
20 COMPLEX A,B(1:10)
30 A=CMPLX(2,1) !Makes a complex number 2+i.
40 FOR X=1 TO 10
50 B(X)=CMPLX(X,X/(-4)) !Makes various complex numbers depending on
loop.
60 PRINT B(X)
70 NEXT X
80 PRINT A
90 END

CONFIGURE BDAT EXAMPLE

10 CONFIGURE BDAT MSB FIRST ! Will create bdat files for HP BASIC on
Workstation
20 CREATE BDAT "test.bdt",20
30 CAT "test.bdt"
40 PURGE "test.bdt"
40 END

CONFIGURE CREATE EXAMPLE

10 CONFIGURE CREATE "HTB" !This sets the file being created to an HTB
header.
20 CREATE "test1.txt",0
30 CONFIGURE CREATE "HP" !This sets the file being created to an HP
header.
40 CREATE "test2.txt",0
50 PURGE "test1.txt"
60 PURGE "test2.txt"
70 END

CONFIGURE DIM EXAMPLE

10 !Before you run this program,
20 !go to a command line and type
30 !the command CONFIGURE DIM OFF.
40 !If you don't, it won't work properly.
50 !The test should produce ERROR 16.
60 !Error 16 is produced because the
70 !variable A$ was not dimensioned first.
80 !With CONFIGURE DIM ON, you do not
90 !need to dimension a variable first.
100 ON ERROR GOTO 70
110 A$="Hello"
120 END

CONFIGURE DUMP EXAMPLE

10 CONFIGURE DUMP TO "WIN-DUMP" !Use windows print driver for dumps to the
printer.
20 DUMP DEVICE IS 10 !Use windows default printer for dumps.
30 CALL Text
40 PRINT "Hello"
50 DUMP ALPHA
60 WAIT 2
70 CALL Graphic
80 DUMP GRAPHICS #10
90 END
100 SUB Text
110 CLEAR SCREEN
120 PRINT "*** Print TEST ****"
130 PRINT "[TAB]";TAB(15);"15 spaces"
140 PRINT TABXY(5,5);"Cool, gotoxy()"
150 PRINT "It is all good!!!"
160 SUBEND
170 SUB Graphic
180 CLEAR SCREEN
190 GINIT
200 MOVE 40,40
210 RECTANGLE 10,20
220 DISP "1"
230 AREA PEN 3
240 RECTANGLE 10,-20,FILL
250 DISP "2"
260 PEN 2
270 RECTANGLE -10,-20,EDGE
280 DISP "3"
290 AREA PEN 7
300 PEN 8
310 RECTANGLE -10,20,FILL,EDGE
320 DISP "4"
330 DISP
340 SUBEND

CONFIGURE KBD EXAMPLE

10 CONTROL KBD,203;1 !Turn off detection of mouse movements.
20 CLEAR SCREEN
30 PRINT "Mapping key '4' to '7'."
40 DISP "Press 'e' to stop"
50 Nustr$="0123756789"
60 Normstr$="0123456789"
70 PRINT "Type 4 and notice that it is now 7."
80 CONFIGURE KBD 48 TO Nustr$!Change 4 to 7.
90 ON KBD GOTO Here
100 REPEAT
110 Loop: GOTO Loop
120 Here: Ch$=KBD$
130 PRINT Ch$
140 UNTIL Ch$="e"
150 CONFIGURE KBD 48 TO Normstr$!Change 4 back to 4.
160 PRINT "Now 4 is back to normal."
170 DISP "All done."
180 END

CONFIGURE KEY EXAMPLE

10 CLEAR SCREEN
20 CONFIGURE KEY 51 TO NUM("<") ! Changes key "3" to a left-arrow.
30 PRINT "Configuring key 3 to a left-arrow."
40 PRINT "Verify that this is true."
50 PRINT "Press continue to quit."
60 PAUSE
70 END

CONFIGURE LABEL EXAMPLE

10 ! This program configures the letter H to a "u" with two dots over it when
using LABEL.
20 CONFIGURE LABEL 72 TO
CHR$(134)&CHR$(10)&CHR$(218)&CHR$(86)&CHR$(69)&CHR$(21)&CHR$(6)&CHR$(140)&CHR$
(14)&CHR$(220)&CHR$(94)
30 MOVE 50,50
40 LABEL "Hello" !The H in Hello should be a "u" with two dots over it.
50 END

CONFIGURE LONGFILENAMES EXAMPLE

10 CLEAR SCREEN
20 CREATE "CONFIGUREA234567890",1
30 CREATE
"CONFIGUREA234567890A234567890A234567890A234567890A234567890A234567890A2345678
90A234567890A234567890",1
40 CONFIGURE LONGFILENAMES ON
50 DISP "Long filename format. Program paused.."
60 CAT "configure*"
70 PAUSE
80 CLEAR SCREEN
90 DISP "Short filename format. Program paused.."
100 CONFIGURE LONGFILENAMES OFF
110 CAT "config*"
111 PAUSE
120 PURGE "CONFIGUREA234567890"
130 PURGE
"CONFIGUREA234567890A234567890A234567890A234567890A234567890A234567890A2345678
90A234567890A234567890"
140 CONFIGURE LONGFILENAMES ON
150 END

CONFIGURE MSI EXAMPLE

10 CONFIGURE MSI ON
20 CONFIGURE MSI ":,720,1" TO "c:\"
30 MASS STORAGE IS ":,720,1"
50 PRINT SYSTEM$("MSI")
60 CONFIGURE MSI OFF
80 PRINT SYSTEM$("MSI")
90 END

CONFIGURE PRT EXAMPLE

10 CONFIGURE PRT TO CRT !Change PRT from a printer to the screen.
20 OUTPUT PRT;"Hello"
30 CONFIGURE PRT TO 10 !Change PRT back to a printer.
40 END

CONFIGURE SAVE EXAMPLE

10 CONFIGURE SAVE ASCII ON
20 CLEAR SCREEN
30 PRINT "SAVE test"
40 SAVE "save.txt" !With CONFIGURE SAVE ASCII ON, notepad will
read the file as garbage.
50 EXECUTE "notepad save.txt"
60 PRINT "Program paused."
70 PURGE "save.txt"
80 PRINT "All done"
90 CONFIGURE SAVE ASCII OFF !With CONFIGURE SAVE ASCII OFF, notepad will
read the file as normal text.
100 CLEAR SCREEN
110 PRINT "SAVE test"
120 SAVE "save.txt"
130 EXECUTE "notepad save.txt"
140 PRINT "Program paused."
150 PURGE "save.txt"
160 PRINT "All done"
170 END

CONJG EXAMPLE

10 CLEAR SCREEN
20 COMPLEX A,B,Y
30 A=CMPLX(2,1)
40 B=CONJG(A) !Returns the conjugate of A.
50 PRINT "a = 2 + i :";A
60 PRINT "b = conjugate of a: ";B
70 END

CONTROL EXAMPLE

10 !LOAD BIN "SERIAL32"
20 CONTROL 9,3;19200 !Set the Serial baud rate to 19200.
30 PRINT STATUS(9,3) !Make sure it was set correctly.
40 END

COPY EXAMPLE

10 Filename$="JUNK.XXX"
20 CLEAR SCREEN
30 SAVE Filename$
40 COPY Filename$ TO "JUNK.jnk"
50 DISP "Copied "&Filename$&" to JUNK.jnk - program paused"
60 CAT "Junk.*"
70 PAUSE
80 PURGE Filename$
90 PURGE "JUNK.jnk"
100 PRINT "Junk files were purged."
110 END

COS EXAMPLE

10 ! This example demonstrates the usage of the trigonometric
20 ! functions. The following triangle will be used:
30
40 ! |\
50 ! | a\ Given C = 4 units and angle
60 ! C| \B c = 53.1301023542 degrees
70 ! |b c\ Note: angle b = 90 degrees.
80 ! +--------
90 ! A
100 CLEAR SCREEN
110 DEG ! get in degree mode
120 REAL A,B,C
130 ! Given:
140 C=4
150 Angle_c=53.1301023542
160 Angle_b=90
170 ! Angle a can be found by simply subtracting the total given
180 ! angles by 180 degrees. Every triangle only has 180
190 ! degress.
200 Angle_a=180-(Angle_c+Angle_b)
210 ! The sine of angle c is defined as C over B. Solving for
220 ! B gives us:
230 B=C/SIN(Angle_c)
240 ! The cosine of angle c is defined as A over B. Solving for
250 ! A gives us:
260 A=B*COS(Angle_c)
270 ! To double check the answers, one possible way is:
280 ! Given: A^2 + C^2 = B^2 and solving for C
290 IF SQR(B^2-A^2)=C THEN
300 PRINT "The leg A =";A;"units."
310 PRINT "The leg B =";B;"units."
320 PRINT "The leg C =";C;"units."
330 PRINT "Angle a is = ";Angle_a;"degrees."
340 PRINT "Angle b is = ";Angle_b;"degrees."
350 PRINT "Angle c is = ";Angle_c;"degrees."
360 ELSE
370 PRINT "An error has occurred."
380 END IF
390 END

COSH EXAMPLE

10 COMPLEX C
20 C=CMPLX(4,7)
30 CLEAR SCREEN
40 PRINT COSH(80)
50 X=REAL(COSH(C))
60 Y=COSH(REAL(C))*COS(IMAG(C))
70 PRINT X,Y
80 IF X=Y THEN
90 PRINT "True"
100 ELSE
110 PRINT "False - error in documentation."
120 END IF
130 X=IMAG(COSH(C))
140 Y=SINH(REAL(C))*SIN(IMAG(C))
150 PRINT X,Y
160 IF X=Y THEN
170 PRINT "True"
180 ELSE
190 PRINT "False - error in documentation."
200 END IF
210 END

COUNT EXAMPLE

10 Directory$="C:\"
20 CAT Directory$;NAMES,COUNT Count
30 PRINT "The number of files in "&Directory$&" is";Count
40 END

CREATE EXAMPLE

10 CLEAR SCREEN
20 PRINT "*** output TEST ****"
30 CREATE "test.txt",0
40 ASSIGN @File TO "test.txt";FORMAT ON
50 A$="This is a test."
60 OUTPUT @File;A$
70 RESET @File
80 ENTER @File;Test$
90 IF A$=Test$ THEN
100 PRINT "Test passed."
110 ELSE
120 PRINT "Test failed. Output string did not equal input string."
130 END IF
140 ASSIGN @File TO *
150 PURGE "test.txt"
160 END

CREATE ASCII EXAMPLE

10 CLEAR SCREEN
20 PRINT "*** output TEST ****"
30 CREATE ASCII "test.txt",0
40 ASSIGN @File TO "test.txt";FORMAT ON
50 A$="This is a test."
60 OUTPUT @File;A$
70 RESET @File
80 ENTER @File;Test$
90 IF A$=Test$ THEN
100 PRINT "Test passed."
110 ELSE
120 PRINT "Test failed. Output string did not equal input string."
130 END IF
140 ASSIGN @File TO *
150 PURGE "test.txt"
160 END

CREATE BDAT EXAMPLE

10 CLEAR SCREEN
20 CREATE BDAT "stuff1.XXX",67
30 CREATE BDAT "stuff2.XXX",67,78
40 CAT "*.XXX"
50 PRINT "CONT to purge files..."
60 PAUSE
70 PURGE "stuff1.XXX"
80 PURGE "stuff2.XXX"
90 PRINT "Files purged."
100 END

CREATE DIR EXAMPLE

10 CLEAR SCREEN
20 CONFIGURE LONGFILENAMES ON
30 CREATE DIR "New directory" !Create the directory.
40 PRINT "I created a directory called"
50 CAT "New*";NAMES !Make sure the directory was created.
60 PAUSE
70 PURGE "New directory"
80 PRINT "I removed it, now."
90 END

CRT EXAMPLE

10 CLEAR SCREEN
20 PRINT CRT
30 PRINTER IS CRT
40 PRINT "Hello"
50 END

CSIZE EXAMPLE

10 CLEAR SCREEN
20 FOR Height=1 TO 20
30 MOVE 0,40
40 DISP Height
50 CSIZE Height,1 !Change the size of the label font.
60 LABEL "Hello World!"
70 WAIT 1
80 CLEAR SCREEN
90 NEXT Height
100 END

CSUM EXAMPLE

10 OPTION BASE 1
20 DIM Matrix(3,3)
30 DIM Vector(3)
40 DATA 1, 2, 3, 4, 5, 6, 7, 8, 9
50 RESTORE
60 READ Matrix(*)
70 CLEAR SCREEN
80 PRINT "The matrix looks like: "
90 Prtmat(Matrix(*),3,3)
100 MAT Vector=CSUM(Matrix)
110 PRINT "The sum of each column is as follows"
120 PRINT Vector(*)
130 END
140 SUB Prtmat(A(*),Lenarr,Widarr)
150! This sub prints out a matrix length of Lenarr and wide as widarr.
160! A 3x3 matrix would print like:
170! [1 2 3] Widarr = 3
180! [4 5 6]
190! [7 8 9]
200! Lenarr = 3
210 ASSIGN @Out TO CRT
220 FOR Col=1 TO Lenarr
230 OUTPUT @Out;" [";
240 FOR Row=1 TO Widarr
250 OUTPUT @Out;A(Col,Row);
260 NEXT Row
270 OUTPUT @Out;"]"
280 NEXT Col
290 ASSIGN @Out TO *
300 SUBEND

CYCLE EXAMPLE

10 ON CYCLE 5 GOTO Here
20 CLEAR SCREEN
30 PRINT "Loop until It is time."
40 LOOP
50 PRINT "Still waiting"
60 WAIT .5
70 END LOOP
80 Here: PRINT "It worked!"
90 PRINT "On cycle interrupts after 5 seconds."
100 END

DATA EXAMPLE

10 DIM Array(4)
20 DATA 1, 2, 3, 4, 5, "Hello user"
30 RESTORE !Set pointer back to beginning of DATA statement.
40 CLEAR SCREEN
50 PRINT "Reading the data."
60 READ Array(*) !Read in the numerics from DATA.
70 PRINT "The array: "
80 PRINT Array(*)
90 READ Str$!Read in the string from DATA.
100 PRINT "and the string was:",Str$
110 END

DATE EXAMPLE

10 CLEAR SCREEN
20 PRINT DATE$(TIMEDATE)
30 PRINT "The number in seconds from 4713 B.C. is",FNJd(DATE$(TIMEDATE))
40 END
50 DEF FNJd(A$)
60 RETURN (DATE(A$) DIV 86400)-1
70 FNEND

DATE$ EXAMPLE

10 CLEAR SCREEN
20 PRINT "The date today is ";DATE$(TIMEDATE)
30 PRINT "The number of seconds from 4713 B.C. is",FNJd(DATE$(TIMEDATE))
40 END
50 DEF FNJd(A$)
60 RETURN (DATE(A$) DIV 86400)-1
70 FNEND

DEALLOCATE EXAMPLE

10 ! ***
20 !
30 ! TEST STACK MANIPULATIONS FOR ALLOCATE #4
40 !
50 ! ***
60 CLEAR SCREEN
70 PRINT "Total Memory "&SYSTEM$("AVAILABLE MEMORY")
80 ON ERROR GOTO L140
90 ALLOCATE A$[32000],B(1000),INTEGER C(10)
100 PRINT "Memory after allocation "&SYSTEM$("AVAILABLE MEMORY")
110 DEALLOCATE A$,C(*),B(*)
120 PRINT "Memory freed "&SYSTEM$("AVAILABLE MEMORY")
130 ALLOCATE A$[32000],B(1000)
140 PRINT "Memory allocated again without the integer array "&SYSTEM$
("AVAILABLE MEMORY")
150 PRINT
160 PRINT "Memory before SUB call "&SYSTEM$("AVAILABLE MEMORY")
170 PRINT "Calling SUB..."
180 Yahoo
190 PRINT "Memory after SUB call "&SYSTEM$("AVAILABLE MEMORY")
200 PRINT
210 ALLOCATE Str$[90]
220 PRINT "Memory after allocated string "&SYSTEM$("AVAILABLE MEMORY")
230 ALLOCATE REAL D(8)
240 PRINT "Memory after allocated REAL array "&SYSTEM$("AVAILABLE MEMORY")
250 STOP
260 L140: PRINT "Test failed"
270 END
280 !
290 SUB Yahoo
300 PRINT "Memory in SUB call "&SYSTEM$("AVAILABLE MEMORY")
310 ALLOCATE COMPLEX Y(4)
320 PRINT "Memory after allocation of COMPLEX array "&SYSTEM$("AVAILABLE
MEMORY")
330 SUBEND

DEF FN EXAMPLE

10 CLEAR SCREEN
20 PRINT "Calling Add function to do the following:"
30 PRINT "5 + 8 =";FNAdd(5,8)
40 PRINT "Calling Message function."
50 PRINT FNMessage$("Hello")
60 END
70 DEF FNAdd(A,B)
80 RETURN A+B
90 FNEND
100 DEF FNMessage$(OPTIONAL String$)
110 RETURN String$&" was passed as a parameter."
120 FNEND

DEG EXAMPLE

10 Angle=80 !Degrees
20 Mode=1
30! DEG (degree) mode = 1
40! RAD (radian) mode = 0
50 CLEAR SCREEN
60 IF Mode THEN
70 DEG
80 PRINT "The sine of ";Angle;"degress is: ";SIN(Angle)
90 ELSE
100 RAD
110 PRINT "The sine of";Angle*(PI/180);"radians is: ";SIN(Angle)
120 END IF
130 END

DELAY EXAMPLE

10 CLEAR SCREEN
20 ON DELAY 3 GOTO Here
30 PRINT "I will wait 3 seconds, sit back and watch."
40 Loop: GOTO Loop
50 PRINT "Go on!"
60 Here: PRINT "Alright, I waited 3 seconds."
70 END

DELSUB EXAMPLE

10! This program deletes an important SUB,
20! DO NOT save after you run!!!!!
30! Notice in the code SUB's One and Two. SUB One
40! will be deleted with the DELSUB command.
50! After you read the instructions comment out the
60! STOP statement.
70 CLEAR SCREEN
80 PRINT "Please read the instructions."
90 STOP
100 One
110 Two
120 DELSUB One
130 PRINT "SUB One deleted"
140 PRINT "Now, exit and do not save the file!"
150 END
160 SUB One
170 PRINT "Hello, in Sub one"
180 SUBEND
190 SUB Two
200 PRINT "Hello, in Sub two"
210 SUBEND

DET EXAMPLE

10 DIM Matrix(1:3,1:3)
20 DATA 1, 2, 3, 4, -5, 6, 7, 8, 9
30 RESTORE
40 CLEAR SCREEN
50 READ Matrix(*)
60 PRINT "The matrix looks like: "
70 Prtmat(Matrix(*),3,3) !Print out the matrix used.
80 PRINT "The determinant is: ";DET(Matrix)
90 END
100 SUB Prtmat(A(*),Lenarr,Widarr)
110! This sub prints out a matrix length of Lenarr and wide as widarr.
120! A 3x3 matrix would print like:
130! [1 2 3] Widarr = 3
140! [4 5 6]
150! [7 8 9]
160! Lenarr = 3
170 ASSIGN @Out TO CRT
180 FOR Col=1 TO Lenarr
190 OUTPUT @Out;" [";
200 FOR Row=1 TO Widarr
210 OUTPUT @Out;A(Col,Row);
220 NEXT Row
230 OUTPUT @Out;"]"
240 NEXT Col
250 ASSIGN @Out TO *
260 SUBEND

DIGITIZE EXAMPLE

10 !Click the mouse button and it will show you where you are on the
screen.
20 CLEAR SCREEN
30 WHILE I<>45
40 DIGITIZE X,Y,Stat$
50 PRINT "Loop";I;"x:";X,"y:";Y
60 PRINT "Status: ";Stat$;" - length: ";LEN(Stat$)
70 I=I+1
80 END WHILE
90 END

DIM EXAMPLE

10 OPTION BASE 0
20 DIM B$(55,2)[25]
30 DIM A$(155,2)[25]
40 DIM C$(25,2)[25]
50 MAT B$=(“E”)
60 PRINT B$(*)
70 MAT C$=(“T”)
80 MAT A$=B$(1:25,*)
90 MAT A$(1:4,*)=C$(1:4,*)
100 PRINT A$(*)
110 END

DISABLE EXAMPLE

10 ON KEY 1 GOTO Here
20 SET KEY 1,"LIST"
30 DISP "Hit F1"
40 WHILE Count<>5
50 Count=Count+1
60 WAIT 1
70 IF Count=2 THEN DISABLE !Once count=2, then pressing F1 will do
nothing.
80 END WHILE
90 Here: PRINT "Reached Here! Count = ";Count
100 SET KEY 1,"EDIT"
110 END

DISABLE INTR EXAMPLE

10 CLEAR SCREEN
30 RESET 7
40 ENABLE INTR 7;2! RESPONDS TO SRQ
50 ON INTR 7,1 GOTO Intrr
60 ON DELAY 10 GOTO Stopp
70 LOOP
80 OUTPUT 720;"HELLO, you."
90 DISP Counter
100 IF Counter=100 THEN
110 DISABLE INTR 7
120 END IF
130 Counter=Counter+1
140 END LOOP
150 STOP
160 Stopp:!
170 PRINT "TIMED OUT"
180 STOP
190 Intrr:!
200 PRINT "INTERRUPTED"
210 OUTPUT 720;"stop"
220 END

DISP EXAMPLE

10 CLEAR SCREEN
20 PRINT "look at the display line."
30 DISP "I can clear this line."
40 WAIT 3
50 DISP
60 END

DISPLAY FUNCITONS EXAMPLE

10 DISPLAY FUNCTIONS OFF
20 FOR I=1 TO 32
30 PRINT CHR$(I);I
40 NEXT I
50 DISPLAY FUNCTIONS ON
60 FOR I=1 TO 32
61 PRINT CHR$(I);I
62 NEXT I
70 END

DIV EXAMPLE

10 IF (8 DIV 3.0)=(FIX(8/3.0)) THEN PRINT "Good."
20 END

DOT EXAMPLE

10 DATA 1,2,3,4,5,6
20 RESTORE
30 Vector: IMAGE 3("[",DD,"]",/) !Printing format.
40 Row_vector: IMAGE 3("[",DD,"]") !Printing format.
50 OPTION BASE 1
60 INTEGER A(3),B(3)
70 CLEAR SCREEN
80 READ A(*),B(*)
90 PRINT "Vector a = "
100 PRINT USING Row_vector;A(*)
110 PRINT "Vector b = "
120 PRINT USING Vector;B(*)
130 PRINT "The DOT product is ";DOT(A,B)
140 END

DRAW EXAMPLE

10 CLEAR SCREEN
20 GINIT
30 PRINT "Program pauses a lot, press CONT."
40 PEN 6
50 FOR Loop=1 TO 10
60 MOVE 10+(Loop*10),40
70 DRAW 10+(Loop*10),80
80 DISP "Line type: ";Loop
90 PAUSE
100 LINE TYPE Loop
110 NEXT Loop
120 END

DROUND EXAMPLE

10 Number=656576
20 CLEAR SCREEN
30 FOR Roundto=1 TO 6
40 PRINT Roundto,DROUND(Number,Roundto) !Round to significant digits
indicated by Roundto.
50 NEXT Roundto
60 END

DUMP EXAMPLE

10 CONFIGURE DUMP TO "WIN-DUMP" !Use the windows print driver for dumps.
20 DUMP DEVICE IS PRT !Set dump device to windows default
printer.
30 Text
40 PRINT "Hello"
50 DUMP ALPHA !Dump out the text on the screen.
60 CLEAR SCREEN
70 PRINT "Press CONT"
80 PAUSE
90 Graphic
100 DUMP GRAPHICS #10 !Dump out the graphics on the screen.
110 END
120 SUB Text
130 CLEAR SCREEN
140 PRINT "*** Print TEST ****"
150 PRINT "[TAB]";TAB(15);"15 spaces"
160 PRINT TABXY(5,5);"TAB test"
170 SUBEND
180 SUB Graphic
190 CLEAR SCREEN
200 GINIT
210 MOVE 40,40
220 RECTANGLE 10,20
230 DISP "1"
240 AREA PEN 3
250 RECTANGLE 10,-20,FILL
260 DISP "2"
270 PEN 2
280 RECTANGLE -10,-20,EDGE
290 DISP "3"
300 AREA PEN 7
310 PEN 8
320 RECTANGLE -10,20,FILL,EDGE
330 DISP "4"
340 DISP
350 SUBEND

DUMP DEVICE IS EXAMPLE

10 CONFIGURE DUMP TO "WIN-DUMP" !Use the windows print driver for dumps.
20 DUMP DEVICE IS PRT !Set dump device to windows default
printer.
30 Text
40 PRINT "Hello"
50 DUMP ALPHA !Dump out the text on the screen.
60 CLEAR SCREEN
70 PRINT "Press CONT"
80 PAUSE
90 Graphic
100 DUMP GRAPHICS #10 !Dump out the graphics on the screen.
110 END
120 SUB Text
130 CLEAR SCREEN
140 PRINT "*** Print TEST ****"
150 PRINT "[TAB]";TAB(15);"15 spaces"
160 PRINT TABXY(5,5);"TAB test"
170 SUBEND
180 SUB Graphic
190 CLEAR SCREEN
200 GINIT
210 MOVE 40,40
220 RECTANGLE 10,20
230 DISP "1"
240 AREA PEN 3
250 RECTANGLE 10,-20,FILL
260 DISP "2"
270 PEN 2
280 RECTANGLE -10,-20,EDGE
290 DISP "3"
300 AREA PEN 7
310 PEN 8
320 RECTANGLE -10,20,FILL,EDGE
330 DISP "4"
340 DISP
350 SUBEND

DVAL EXAMPLE

10 CLEAR SCREEN
20 PRINT "DVAL conversion test."
30 PRINT
40 PRINT DVAL("00000000000000000000000001100010",2)! From Binary to
Decimal.
50 PRINT DVAL("142",8) ! From Octal to Decimal.
60 PRINT DVAL("98",10) ! From base 10 to Decimal.
70 PRINT DVAL("62",16) ! From Hex to Decimal.
80 PRINT
90 PRINT "See DVAL$.prg as well."
100 END

DVAL$ EXAMPLE

10 Number=98
20 CLEAR SCREEN
30 PRINT "DVAL$ conversion test."
40 PRINT
50 PRINT "Convert";Number;"to... "
60 PRINT "binary: ",DVAL$(Number,2)! to binary
70 PRINT "octal: ",DVAL$(Number,8)! to octal
80 PRINT "base ten: ",DVAL$(Number,10)! to base 10
90 PRINT "hex: ",DVAL$(Number,16)! to hex
100 END

ECHO EXAMPLE

10 PLOTTER IS CRT,"INTERNAL";COLOR MAP
20 CLEAR SCREEN
30 SET ECHO 65,50 !Set the crosshair to the middle of the screen.
40 READ LOCATOR X,Y !Read where the mouse pointer is at.
50 PRINT X,Y
60 END

EDGE EXAMPLE

10 CLEAR SCREEN
20 GINIT
30 MOVE 40,40
40 RECTANGLE 10,20
50 DISP "1"
60 WAIT 1
70 AREA PEN 3
80 RECTANGLE 10,-20,FILL
90 DISP "2"
100 WAIT 1
110 PEN 2
120 RECTANGLE -10,-20,EDGE
130 DISP "3"
140 WAIT 1
150 AREA PEN 7
160 PEN 8
170 RECTANGLE -10,20,FILL,EDGE
180 DISP "4"
190 WAIT 1
200 DISP
210 END

ELSE EXAMPLE

10 IF NOT 1 THEN
20 CLEAR SCREEN
30 PRINT 5
40 BEEP
50 ELSE
60 PRINT "NOT 1"
70 STOP
80 END IF
90 PRINT "all good"
100 END

ENABLE INTR EXAMPLE

10 RESET 7
30 ENABLE INTR 7;2 ! RESPONDS TO SRQ
40 ON INTR 7,1 GOTO Intrr
50 ON TIMEOUT 7,30 GOTO Stopp
60 LOOP
70 OUTPUT 720;"HELLO"
80 END LOOP
90 STOP
100 Stopp:!
110 PRINT "TIMED OUT"
120 STOP
130 Intrr:!
140 PRINT "INTERRUPTED"
150 END

END EXAMPLE

10 CLEAR SCREEN
20 END

END IF EXAMPLE

10 IF 1 THEN
20 CLEAR SCREEN
30 PRINT 5
40 BEEP
50 ELSE
60 PRINT "NO"
70 STOP
80 END IF
90 PRINT "all good"
100 END

END LOOP EXAMPLE

10 CLEAR SCREEN
20 LOOP
30 PRINT "Iterarion:";Counter
40 PRINT Counter MOD 3
50 Counter=Counter+1
60 EXIT IF Counter=5 OR (Counter MOD 4)=3
70 PRINT "Not finished."
80 END LOOP
90 PRINT "All done."
100 END

END SELECT EXAMPLE

10 CLEAR SCREEN
20 INPUT "Please enter your age:",Age
30 SELECT Age
40 CASE <1,>100
50 PRINT "Congratulations - Movie is free!"
60 GOTO End
70 CASE <12
80 Price=2.00
90 CASE 12 TO 59
100 Price=6.50
110 CASE 60
120 PRINT "Special movie rate"
130 Price=3.00
140 CASE ELSE
150 Price=4.50
160 END SELECT
170 Image: IMAGE "Movie price is $", D.2D
180 PRINT USING Image;Price
190 End: END

END WHILE EXAMPLE

10 Good=6
20 WHILE Good
30 PRINT Good
40 Good=Good-1
50 END WHILE
60 END

ENTER EXAMPLE

10 CLEAR SCREEN
20 PRINT "*** output TEST ****"
30 CREATE "test.txt",0
40 PRINT "Created file:"
50 CAT "*.txt";NAMES
60 ASSIGN @File TO "test.txt";FORMAT ON
70 OUTPUT @File;"Hello world."
80 PRINT "Wrote to file."
90 RESET @File
100 ENTER @File;Test$
110 PRINT "Read string from file: ";Test$
120 ASSIGN @File TO *
130 PRINT "CONT to purge file."
140 PAUSE
150 PURGE "test.txt"
160 PRINT "File purged."
170 END

ENVIRON$ EXAMPLE

10 CLEAR SCREEN
20 PRINT "Some environment variables are defined as:"
30 PRINT "PATH:"
40 PRINT ENVIRON$("PATH")
50 PRINT "TEMP:"
60 PRINT ENVIRON$("TEMP")
70 END

EOL EXAMPLE

10 CLEAR SCREEN
20 PRINT "*** Assign Buffer TEST ****"
30 ASSIGN @Test TO 720;EOL OFF
40 ASSIGN @Out TO CRT
50 OUTPUT @Test;"Hello, how are you?"
60 PRINT "All done."
70 END

ERRL EXAMPLE

10 CLEAR SCREEN
20 ON ERROR GOTO 50
30 !force error
40 Here: PRINT SYSTEM$("NON EXISTAT ") !gives error 401
50 PRINT "Testing line label for error."
60 IF ERRL(Here) THEN CALL Testerr !See if the error occurred on line 40.
70 PRINT "If you see this line, the test failed."
80 END
90 SUB Testerr
100 BEEP
110 PRINT "Error *";ERRN;"on line";ERRLN
120 STOP
130 SUBEND

ERRLN EXAMPLE

10 CLEAR SCREEN
20 ON ERROR CALL Testerr
30 Forceerr
40 PRINT "If you see this line, the test failed."
50 END
60 SUB Forceerr
70 !force error
80 PRINT SYSTEM$("NON EXISTAT")!gives error 401
90 SUBEND
100 SUB Testerr
110 BEEP
120 PRINT "Error *";ERRN;"on line";ERRLN
130 STOP
140 SUBEND

ERRM$ EXAMPLE

10 CLEAR SCREEN
20 ON ERROR CALL Testerr
30 Forceerr
40 PRINT "If you read this message, the test failed."
50 END
60 SUB Forceerr
70 !force error
80 PRINT SYSTEM$("NON EXISTAT ")!gives error 401
90 SUBEND
100 SUB Testerr
110 BEEP
120 PRINT "*";ERRM$
130 STOP
140 SUBEND

ERRN EXAMPLE

10 CLEAR SCREEN
20 ON ERROR CALL Testerr
30 Forceerr
40 PRINT "If you read this message, the test failed."
50 END
60 SUB Forceerr
70 !force error
80 PRINT SYSTEM$("NON EXISTAT ") !gives error 401
90 SUBEND
100 SUB Testerr
110 BEEP
120 PRINT "Error *";ERRN;"on line";ERRLN
130 STOP
140 SUBEND

ERROR EXAMPLE

10 CLEAR SCREEN
20 ON ERROR CALL Testerr
30 Forceerr
40 PRINT "You should never see this line."
50 END
60 SUB Forceerr
70 !force error
80 PRINT SYSTEM$("NON EXISTAT ") !gives error 401
90 SUBEND
100 SUB Testerr
110 BEEP
120 PRINT "Error *";ERRN;"on line";ERRLN
130 STOP
140 SUBEND

ERROR RETURN EXAMPLE

10 ON ERROR GOSUB Here
20 CLEAR SCREEN
30 CAUSE ERROR 0
40 PRINT "Skip error"
50 STOP
60 Here: PRINT "On";I;"- Intercepted error";ERRN
70 ERROR RETURN
80 PRINT "This line is never reached."
90 END

ERROR SUBEXIT EXAMPLE

10 ON ERROR CALL Here
20 CLEAR SCREEN
30 CAUSE ERROR 0
40 PRINT "Skip error, and continue..."
50 PRINT "test complete"
60 END
70 SUB Here
80 PRINT "On cause error ";I;"- Intercepted error";ERRN
90 ERROR SUBEXIT
100 PRINT "Should have exited before this statement."
110 SUBEND

EXECUTE EXAMPLE

10 DIM S$[40]
20 REPEAT
30 CLEAR SCREEN
40 PRINT "Hello, welcome to PC Pro"
50 PRINT
60 PRINT " PC Pro is your pseudo DOS prompt."
70 PRINT "Type EXIT to quit."
80 INPUT "Enter command to run:",S$
90 IF S$<>"exit" THEN
100 EXECUTE S$
110 END IF
120 UNTIL S$="exit"
130 CLEAR SCREEN
140 PRINT "Good bye!"
150 END

EXIT IF EXAMPLE

10 CLEAR SCREEN
20 LOOP
30 PRINT "Iteration:";Counter
40 PRINT Counter MOD 3
50 Counter=Counter+1
60 EXIT IF Counter=5 OR (Counter MOD 4)=3
70 PRINT "Not finished."
80 END LOOP
90 PRINT "All done."
100 END

EXOR EXAMPLE

10 ! This program prints the truth table for an EXOR function.
20 DATA 0,0,0,1,1,0,1,1
30 RESTORE
40 CLEAR SCREEN
50 PRINT "EXOR test"
60 PRINT " J"," K","J EXOR K"
70 FOR L=1 TO 4
80 READ J,K
90 PRINT J,K,J EXOR K
100 NEXT L
110 END

EXP EXAMPLE

10 Begin_balance=2000
20 Rate=.08
30 Years=8
40 Balance=Begin_balance*EXP(Rate*Years)
50 Money: IMAGE "$", 5DD.DD
60 Percent: IMAGE "%", DD
70 CLEAR SCREEN
80 PRINT "By putting"
90 PRINT USING Money;Begin_balance
100 PRINT "in an account which is compounded continuously at"
110 Rate=Rate*100
120 PRINT USING Percent;Rate
130 PRINT "At the end of";Years;"years you will have"
140 PRINT USING Money;Balance
150 END

EXPANDED EXAMPLE

10 CONFIGURE DUMP TO "WIN-DUMP" !Use the windows print driver for dumps.
20 DUMP DEVICE IS PRT,EXPANDED !Set dump device to windows default
printer.
30 Text !EXPANDED option rotates the picture 90
degrees on the page.
40 PRINT "Hello"
50 DUMP ALPHA !Dump out the text on the screen.
60 CLEAR SCREEN
70 PRINT "Press CONT"
80 PAUSE
90 Graphic
100 DUMP GRAPHICS #10 !Dump out the graphics on the screen.
110 END
120 SUB Text
130 CLEAR SCREEN
140 PRINT "*** Print TEST ****"
150 PRINT "[TAB]";TAB(15);"15 spaces"
160 PRINT TABXY(5,5);"TAB test"
170 SUBEND
180 SUB Graphic
190 CLEAR SCREEN
200 GINIT
210 MOVE 40,40
220 RECTANGLE 10,20
230 DISP "1"
240 AREA PEN 3
250 RECTANGLE 10,-20,FILL
260 DISP "2"
270 PEN 2
280 RECTANGLE -10,-20,EDGE
290 DISP "3"
300 AREA PEN 7
310 PEN 8
320 RECTANGLE -10,20,FILL,EDGE
330 DISP "4"
340 DISP
350 SUBEND

FILL EXAMPLE

10 CLEAR SCREEN
20 GINIT
30 MOVE 40,40
40 RECTANGLE 10,20
50 DISP "1"
60 WAIT 1
70 AREA PEN 3
80 RECTANGLE 10,-20,FILL
90 DISP "2"
100 WAIT 1
110 PEN 2
120 RECTANGLE -10,-20,EDGE
130 DISP "3"
140 WAIT 1
150 AREA PEN 7
160 PEN 8
170 RECTANGLE -10,20,FILL,EDGE
180 DISP "4"
190 WAIT 1
200 DISP
210 END

FIX EXAMPLE

10 DATA 2.6, 2.2, -2.2, -2.6
20 RESTORE
30 CLEAR SCREEN
40 PRINT "Variable value conversion test"
50 PRINT "Value","CINT(X)","FIX(X)","INT(X)"
60 FOR L=1 TO 4
70 READ X
80 PRINT X,CINT(X),FIX(X),INT(X)
90 NEXT L
100 END

FN EXAMPLE

10 CLEAR SCREEN
20 PRINT "5 + 8 =";FNAdd(5,8)
30 PRINT FNMessage$("Hello")
40 END
50 DEF FNAdd(A,B)
60 RETURN A+B
70 FNEND
80 DEF FNMessage$(OPTIONAL String$)
90 IF NPAR=0 THEN RETURN "You didn't use the OPTIONAL parameter."
100 RETURN String$&" was a good choice."
110 FNEND

FNEND EXAMPLE

10 CLEAR SCREEN
20 PRINT "5 + 8 =";FNAdd(5,8)
30 PRINT FNMessage$("Hello")
40 END
50 DEF FNAdd(A,B)
60 RETURN A+B
70 FNEND
80 DEF FNMessage$(OPTIONAL String$)
90 IF NPAR=0 THEN RETURN "You didn't use the OPTIONAL parameter."
100 RETURN String$&" was a good choice."
110 FNEND

FOR ... NEXT EXAMPLE

10 CLEAR SCREEN
20 PRINT "For loop demo."
30 PRINT "Count from 40 to 500 by 20."
40 FOR J=40 TO 500 STEP 20
50 PRINT TAB(5),J
60 WAIT .25
70 NEXT J
80 PRINT "test complete"
90 END

FORMAT EXAMPLE

10 CLEAR SCREEN
20 CREATE "test.txt",0
30 PRINT "Created file: ";
40 CAT "*.txt";NAMES
50 ASSIGN @File TO "test.txt";FORMAT ON !FORMAT ON means it's an ordinary
ASCII file.
60 OUTPUT @File;"This is a test"
70 PRINT "Output a string to the file."
80 RESET @File
90 PRINT "Reset the file to the beginning and read string."
100 ENTER @File;Test$
110 PRINT "The string read was: ";Test$
120 ASSIGN @File TO *
130 PURGE "test.txt"
140 PRINT "File purged."
150 END

FRE EXAMPLE

10 CLEAR SCREEN
20 PRINT "Amount of free memory: ";FRE
30 END

FROM EXAMPLE

10 CLEAR SCREEN
20 MASS STORAGE IS "d:"
30 READ LABEL Id$!Reads the LABEL on the drive.
40 READ LABEL Id2$ FROM "c:"
50 PRINT SYSTEM$("MSI");Id$
60 PRINT "C:\ ";Id2$
70 END

GCLEAR EXAMPLE

10 RECTANGLE 20,40,FILL,EDGE
20 PRINT "In two seconds, I will GCLEAR"
30 WAIT 2
40 GCLEAR
50 END

GESCAPE EXAMPLE

10 CALL Code1
20 CALL Code2
30 CALL Code3
40 CALL Code4_5
50 CALL Code6
60 CALL Code102
70 CALL Code103
80 ! CALL Code104
90 CALL Code106
100 CALL Code130
110 CALL Code131
120 CALL Code132
130 CALL Code135
140 CALL Code138
150 CALL Code137
160 CALL Code141
170 CALL Code30
180 CALL Code31
190 CALL Code32
200 CALL Code33
210 CALL Code34
220 CALL Code35
230 CALL Code36
240 CALL Code37
250 CALL Code38
260 CALL Code39
270 CALL Code41
280 END
290 !
300 ! Gescape code 1 returns the number of color map entries.
310 ! A typical computer will return 256 as the answer.
320 !
330 SUB Code1
340 INTEGER A_return(0)
350 GESCAPE CRT,1;A_return(*)
360 PRINT "There are";A_return(0);"color map entries."
370 WAIT 2
380 CLEAR SCREEN
390 SUBEND
400 !
410 ! Gescape code 2 returns color map values. For example, the first

420 ! row of the array contains information for pen 0, the second
430 ! for pen 1, and so on. The first column of the array is the
440 ! red value, the second green, and the third blue.
450 !
460 SUB Code2
470 REAL B_return(15,2)
480 GESCAPE CRT,2;B_return(*)
490 PRINT "PEN","RED","GREEN","BLUE"
500 FOR I=0 TO 15
510 PRINT
I,DROUND(B_return(I,0),1),DROUND(B_return(I,1),1),DROUND(B_return(I,2),1)
520 NEXT I
530 WAIT 2
540 CLEAR SCREEN
550 SUBEND
560 !
570 ! Gescape code 3 returns the hard-clip values and GSTORE array size.
580 ! The return array must be a one dimensional INTEGER array and must
590 ! contain at least four elements. The first four elements of the array
600 ! are assigned the values Xmin, Ymin, Xmax, and Ymax. For a CRT, the
fifth
610 ! and sixth elements give the INTEGER array dimensions needed by the
GSTORE
620 ! command to store the screen image.
630 !
640 SUB Code3
650 INTEGER C_return(5)
660 GESCAPE CRT,3;C_return(*)
670 PRINT "Xmin","Ymin","Xmax","Ymax","Rows","Columns"
680 PRINT
C_return(0),C_return(1),C_return(2),C_return(3),C_return(4),C_return(5)
690 WAIT 2
700 CLEAR SCREEN
710 SUBEND
720 !
730 ! Gescape codes 4 and 5 change the graphics writing mode. If the code is
4,
740 ! the drawing mode is set to normal. If the code is 5, the drawing mode
750 ! is set to alternate. See the User's Guide for specific information.
760 !
770 SUB Code4_5
780 GESCAPE CRT,5 !Set to alternate drawing mode.
790 GESCAPE CRT,4 !Set to normal drawing mode.
800 SUBEND

810 !
820 ! Gescape code 6 returns the graphics display mask. The return array
must be a
830 ! one dimensional INTEGER array, and must have at least one element. The
first
840 ! element is assigned the value of the graphics write-enable mask. The
second
850 ! element, if present, is assigned the value of the graphics display
enable mask.
860 !
870 SUB Code6
880 INTEGER D_return(1)
890 GESCAPE CRT,6;D_return(*)
900 PRINT "Graphics write enable mask :";D_return(0)
910 PRINT "Graphics display enable mask :";D_return(1)
920 WAIT 2
930 CLEAR SCREEN
940 SUBEND
950 !
960 ! Gescape code 102 returns the current VIEWPORT and WINDOW values. The
return
970 ! array should be a two dimensional REAL array with two rows and four
columns.
980 !
990 SUB Code102
1000 REAL W(1,3)
1010 GESCAPE CRT,102;W(*)
1020 PRINT "The current window is ";W(0,0),W(0,1),W(0,2),W(0,3)
1030 PRINT "The current viewport is";W(1,0),W(1,1),W(1,2),W(1,3)
1040 WAIT 2
1050 CLEAR SCREEN
1060 SUBEND
1070 !
1080 ! Gescape code 103 returns the current PEN and AREA PEN assignments. The
return
1090 ! array should be a one dimensional INTEGER array with two elements. The
first
1100 ! element is assigned the current PEN assignment. The second element is
assigned the
1110 ! current AREA PEN assignment.
1120 !
1130 SUB Code103
1140 INTEGER P(1)
1150 GESCAPE CRT,103;P(*)
1160 PRINT "The current PEN is";P(0)

1170 PRINT "The current AREA PEN is";P(1)
1180 WAIT 2
1190 CLEAR SCREEN
1200 SUBEND
1210 !
1220 ! Gescape code 104 sets device-specific information. The param array
must be a one
1230 ! dimensional INTEGER array. The number of elements required depends on
the device
1240 ! driver. Conventionally, it contains two elements. The first element is
the operation
1250 ! number and the second element is the value associated with that
operation.
1260 !
1270 SUB Code104
1280 INTEGER Param(1)
1290 Param(0)=1 !HPGL Operation Number: 1 = HPGL/2 Flag
1300 Param(1)=1 !Value: 1=enable, 0=disable
1310 GESCAPE 7,104,Param(*) !7 is the ISC. You can use any ISC.
1320 SUBEND
1330 !
1340 ! Gescape code 105 sets device-specific information in the GRAPHICS
INPUT IS device.
1350 ! It is the same as the gescape code 104 shown above. The only
difference is that you
1360 ! are sending codes specific for the GRAPHICS INPUT IS device you are
using.
1370 !
1380 !
1390 ! Gescape code 106 sets device-specific information in the DUMP DEVICE
IS device.
1400 ! The param array must be a one dimensional INTEGER array. The number of
elements
1410 ! required depends on the device driver. The first element is the
operation
1420 ! number and the subsequent elements are the values associated with that
1430 ! operation.
1440 !
1450 SUB Code106
1460 PAUSE
1470 INTEGER A(1:5)
1480 CONTROL 26,102;2
1490 CONFIGURE DUMP TO "PCL"
1500 DUMP DEVICE IS 26
1510 A(1)=1 ! operation code, always 1

1520 A(2)=100 ! begin row, screen units
1530 A(3)=300 ! end row, screen units
1540 A(4)=0 ! reserved, must be 0
1550 A(5)=0 ! reserved, must be 0
1560 GESCAPE 26,106,A(*)
1570 FRAME
1580 MOVE 0,0
1590 DRAW 100,100
1600 DUMP GRAPHICS
1610 SUBEND
1620 !
1630 ! Gescape code 130 maximizes the Basic child window.
1640 !
1650 SUB Code130
1660 GESCAPE CRT,130
1670 WAIT 2
1680 SUBEND
1690 !
1700 ! Gescape code 131 hides the Basic child window.
1710 !
1720 SUB Code131
1730 PRINT "The Basic child window will now be hidden."
1740 WAIT 2
1750 GESCAPE CRT,131
1760 WAIT 2
1770 SUBEND
1780 !
1790 ! Gescape code 132 restores the Basic child window once it has been
hidden.
1800 !
1810 SUB Code132
1820 GESCAPE CRT,132
1830 PRINT "The Basic child window has been restored."
1840 WAIT 2
1850 SUBEND
1860 !
1870 ! Gescape code 135 brings the Basic child window to the top.
1880 !
1890 SUB Code135
1900 GESCAPE CRT,135
1910 WAIT 2
1920 SUBEND
1930 !

1940 ! Gescape code 138 Hides/Restores the title bar of the child window.
1950 !
1960 SUB Code138
1970 GESCAPE CRT,138
1980 PRINT "The title bar has been hidden."
1990 WAIT 2
2000 GESCAPE CRT,138
2010 PRINT "The title bar has been restored."
2020 CLEAR SCREEN
2030 SUBEND
2040 !
2050 ! Gescape 137 returns the Title Bar enable flag of the child window.
2060 !
2070 SUB Code137
2080 INTEGER X(0)
2090 GESCAPE CRT,138
2100 GESCAPE CRT,137;X(*)
2110 DISP "The Title Bar enable flag is";X(*);"with the Title Bar hidden."
2120 GESCAPE CRT,138
2130 WAIT 2
2140 GESCAPE CRT,137;X(*)
2150 PRINT "The Title Bar enable flag is";X(*);"with the Title Bar
restored."
2160 WAIT 2
2170 CLEAR SCREEN
2180 SUBEND
2190 !
2200 ! Gescape code 141 minimizes the Basic child window.
2210 !
2220 SUB Code141
2230 GESCAPE CRT,141
2240 WAIT 2
2250 GESCAPE CRT,130
2260 SUBEND
2270 !
2280 ! Gescape code 30 maximizes the Basic parent window.
2290 !
2300 SUB Code30
2310 GESCAPE CRT,30
2320 PRINT "The parent window is maximized."
2330 WAIT 2
2340 CLEAR SCREEN
2350 SUBEND

2360 !
2370 ! Gescape code 31 hides the Basic parent window.
2380 !
2390 SUB Code31
2400 PRINT "The parent window will now be hidden."
2410 WAIT 2
2420 GESCAPE CRT,31
2430 WAIT 2
2440 SUBEND
2450 !
2460 ! Gescape code 32 restores the Basic parent window once it has been
hidden.
2470 !
2480 SUB Code32
2490 GESCAPE CRT,32
2500 PRINT "The parent window has been restored."
2510 WAIT 2
2520 CLEAR SCREEN
2530 SUBEND
2540 !
2550 ! Gescape code 33 is used to set the parent window position and size.
2560 !
2570 SUB Code33
2580 INTEGER Set(1:4)
2590 DATA 90,100,500,300
2600 READ Set(*)
2610 GESCAPE CRT,33,Set(*)
2620 PRINT "The parent window is now at position";Set(1);",";Set(2)
2630 PRINT "Its width is";Set(3);"and its height is";Set(4)
2640 WAIT 2
2650 GESCAPE CRT,41
2660 GESCAPE CRT,30
2670 WAIT 2
2680 CLEAR SCREEN
2690 SUBEND
2700 !
2710 ! Gescape code 34 gets the parent window position and size.
2720 !
2730 SUB Code34
2740 INTEGER Get(1:4)
2750 GESCAPE CRT,34;Get(*)
2760 PRINT "The parent window is located at";Get(1);",";Get(2)
2770 PRINT "Its width is";Get(3);"and its height is";Get(4)

2780 WAIT 2
2790 CLEAR SCREEN
2800 SUBEND
2810 !
2820 ! Gescape code 35 brings the parent window back to the top of the
screen.
2830 !
2840 SUB Code35
2850 GESCAPE CRT,35
2860 WAIT 2
2870 SUBEND
2880 !
2890 ! Gescape code 36 gets the screen size.
2900 !
2910 SUB Code36
2920 INTEGER G(1:2)
2930 GESCAPE CRT,36;G(*)
2940 PRINT "The screen dimensions are";G(1);"by";G(2)
2950 WAIT 2
2960 CLEAR SCREEN
2970 SUBEND
2980 !
2990 ! Gescape code 37 returns the Title Bar enable flag of the parent
window.
3000 !
3010 SUB Code37
3020 INTEGER X(0)
3030 GESCAPE CRT,38
3040 GESCAPE CRT,37;X(*)
3050 PRINT "The Title Bar enable flag is";X(*);"with the Title Bar hidden."
3060 WAIT 2
3070 GESCAPE CRT,38
3080 GESCAPE CRT,37;X(*)
3090 PRINT "The Title Bar enable flag is";X(*);"with the Title Bar
restored."
3100 WAIT 2
3110 CLEAR SCREEN
3120 SUBEND
3130 !
3140 ! Gescape code 38 Hides/Restores the Title Bar of the parent window.
3150 !
3160 SUB Code38
3170 GESCAPE CRT,38

3180 PRINT "The title bar has been hidden."
3190 WAIT 2
3200 GESCAPE CRT,38
3210 PRINT "The title bar has been restored."
3220 WAIT 2
3230 CLEAR SCREEN
3240 SUBEND
3250 !
3260 ! Gescape code 39 sets the DUMP size (% of paper width).
3270 !
3280 SUB Code39
3290 INTEGER S(1:1)
3300 S(1)=50
3310 GESCAPE CRT,39,S(*)
3320 DUMP DEVICE IS 10
3330 CONFIGURE DUMP TO "WIN-DUMP"
3340 DUMP GRAPHICS
3350 SUBEND
3360 !
3370 ! Gescape code 41 minimizes the parent window.
3380 !
3390 SUB Code41
3400 GESCAPE CRT,41
3410 WAIT 2
3420 GESCAPE CRT,32
3430 SUBEND

GET EXAMPLE

10 CLEAR SCREEN
20 PRINT "CONT to GET file."
30 PAUSE
40 GET "print.prg"
50 END

GFONT IS EXAMPLE

10 MOVE 10,50
11 GFONT IS ""
20 LABEL "Default label text"
30 GFONT IS "courier"
40 LABEL "label text after GFONT IS ""COURIER"""
50 END

GINIT EXAMPLE

10 MERGE ALPHA WITH GRAPHICS
20 PRINT TABXY(30,13);"hello"
30 AREA PEN 2
40 MOVE 50,50
50 POLYGON 30,FILL
60 WAIT 2
70 GINIT
80 MOVE 50,50
90 PEN 5
100 POLYGON 20
110 END

GLOAD EXAMPLE

10 INTEGER A(1:6)
20 GESCAPE CRT,3;A(*)
30 ALLOCATE INTEGER B(1:A(5),1:A(6))
40 GINIT
50 GCLEAR
60 CLEAR SCREEN
70 MOVE 40,40
80 AREA PEN 7
90 RECTANGLE 20,20,FILL
100 GSTORE B(*)
110 WAIT 3
120 CLEAR SCREEN
130 MOVE 30,40
140 GLOAD B(*)
150 END

GOSUB EXAMPLE

10 Y=3
20 Z=4
30 GOSUB Calc_x
40 PRINT "X = ";X
50 STOP
60 Calc_x: X=Y*45/Z
70 RETURN
80 END

GOTO EXAMPLE

10 CLEAR SCREEN
20 PRINT "This is the wacky GOTO example."
30 GOTO L5
40 L1: PRINT "Now, I am at line 1 (L1)."
50 PRINT "L1 - GOTO L3"
60 GOTO L3
70 L2: PRINT "At L2 - Please wait 3 seconds."
80 WAIT 3
90 GOTO L4
100 L3: PRINT "L3 - GOTO L2"
110 GOTO L2
120 L4: PRINT "L4 - Program stopped."
130 STOP
140 L5: PRINT "Hello, you are at L5."
150 GOTO L1
160 END

GRAPIHCS EXAMPLE

10 ! CRT Register: 7
20 ! Gets the graphics mode status.
30 CLEAR SCREEN
40 GRAPHICS OFF
50 PRINT "Graphics Mode flag is";STATUS(CRT,7)
60 WAIT 1.5
70 SEPARATE ALPHA FROM GRAPHICS
80 GRAPHICS OFF
90 IF STATUS(CRT,7)=0 THEN
100 GRAPHICS ON
110 END IF
120 MOVE 50,50
130 POLYGON 10,FILL
140 END

GRAPIHCS INPUT IS EXAMPLE

10 PLOTTER IS CRT,"INTERNAL"
20 GRAPHICS INPUT IS KBD,"KBD"
30 TRACK CRT IS ON
40 FRAME
50 DIGITIZE X,Y,S$
60 PRINT X,Y,S$
70 END

GRID EXAMPLE

10 CLEAR SCREEN
20 GRID
30 New
40 GRID 20
50 New
60 GRID 20,10
70 New
80 GRID 10,20,20
90 New
100 GRID 20,10,20,10
110 New
120 GRID 10,10,10,10,20
130 New
140 GRID 20,20,10,10,20,20
150 New
160 GRID 10,20,10,20,10,20,10
170 END
180 SUB New
190 WAIT 1.5
200 CLEAR SCREEN
210 SUBEND

GSTORE EXAMPLE

10 INTEGER A(1:6)
20 GESCAPE CRT,3;A(*)
30 ALLOCATE INTEGER B(1:A(5),1:A(6))
40 GINIT
50 GCLEAR
60 CLEAR SCREEN
70 MOVE 40,40
80 AREA PEN 7
90 RECTANGLE 20,20,FILL
100 GSTORE B(*)
110 WAIT 3
120 CLEAR SCREEN
130 MOVE 30,40
140 GLOAD B(*)
150 END

IDN EXAMPLE

10 DIM Matrix(1:3,1:3)
20 DATA 1, 2, 3, 4, 5, 6, 7, 8, 9
30 RESTORE
40 READ Matrix(*)
50 CLEAR SCREEN
60 PRINT "The matrix looks like: "
70 Prtmat(Matrix(*),3,3)
80 MAT Matrix=IDN
90 PRINT "Matrix idenity"
100 Prtmat(Matrix(*),3,3)
110 END
120 SUB Prtmat(A(*),Lenarr,Widarr)
130! This sub prints out a matrix length of Lenarr and wide as widarr.
140! A 3x3 matrix would print like:
150! [1 2 3] Widarr = 3
160! [4 5 6]
170! [7 8 9]
180! Lenarr = 3
190 ASSIGN @Out TO CRT
200 FOR Col=1 TO Lenarr
210 OUTPUT @Out;" [";
220 FOR Row=1 TO Widarr
230 OUTPUT @Out;A(Col,Row);
240 NEXT Row
250 OUTPUT @Out;"]"
260 NEXT Col
270 ASSIGN @Out TO *
280 SUBEND

IDRAW EXAMPLE

10 CLEAR SCREEN
20 GCLEAR
30 MOVE 0,0
40 DRAW 50,50
50 DRAW 10,50
60 DISP "Program paused."
70 PAUSE
80 CLEAR SCREEN
90 MOVE 0,0
100 IDRAW 50,50
110 IDRAW 10,50
120 END

if_then EXAMPLE

10 CLEAR SCREEN20 X= NOT 0 ! x is non zero, so it is true.30 PRINT
"Is x true...?"40 IF X THEN50 PRINT "X is true."
60 ELSE
70 PRINT "NO, x is not true."
80 END IF
90 END

imag EXAMPLE

10 COMPLEX C,Z20 C=CMPLX(3,4)30 Z=CMPLX(3453,4444)40 PRINT
IMAG(Z)50 PRINT REAL(C),IMAG(C)60 END

image EXAMPLE

10 OPTION BASE 1
20 DIM A(3,3)
30 DATA -4, 36, 2.3, 5, 89, 17, -6, -12, 42, 1, 2, 3
40 RESTORE
50 ! Format (Fmt) for specified matrix (3x3)
60 Fmt3x3: IMAGE 3("[",3DD.DD,3DD.DD,3DD.DD,"]",/)
70 CLEAR SCREEN
80 READ A(*)
90 PRINT "Print the array using the 3x3 matrix format/image"
100 PRINT USING Fmt3x3;A(*)
110 END

imove EXAMPLE

10 CLEAR SCREEN
20 GCLEAR
30 MOVE 0,50
40 PEN 4
50 AREA PEN 1
60 IMOVE 10,10
70 RECTANGLE 5,5,FILL
80 AREA PEN 2
90 IMOVE 30,30
100 RECTANGLE 5,5,FILL
110 PRINT "Press CONTINUE..."
120 PAUSE
130 GINIT
140 CLEAR SCREEN
150 MOVE 0,50
160 PEN 4
170 AREA PEN 1
180 MOVE 10,10
190 RECTANGLE 5,5,FILL
200 AREA PEN 2
210 MOVE 30,30
220 RECTANGLE 5,5,FILL
230 END

inmem EXAMPLE

10 CLEAR SCREEN
20 Str$="FNZtest"
30 IF INMEM(Str$) THEN
40 PRINT "Procedure ";Str$;" is in memory"
50 ELSE
60 PRINT "No such procedure ";Str$;" in memory."
70 END IF
80 END
90 SUB Test
100 SUBEND
110 DEF FNZtest
120 FNEND

inp EXAMPLE

10 CLEAR SCREEN
20 PRINT INP(&H3F8)
30 PRINT INP(&H3E8)
40 PRINT INPW(&H3F8)
50 PRINT INPW(&H3E8)
60 OUT (&H3F8),3
70 PRINT INP(&H3F8)
80 OUTW (&H3F8),45
90 PRINT INPW(&H3F8)
100 END

input EXAMPLE

10 PRINT "Enter your name."
20 INPUT B$
30 PRINT "Enter your age."
40 INPUT A
50 PRINT "Hello ";B$&",";" you are";A;"years old."
60 END

inpw EXAMPLE

10 PRINT IVAL$(INPW(&H3F80),16)
20 END

int EXAMPLE

10 J=INT(2.7)
20 PRINT J
30 K=INT(-2.7)
40 PRINT K
50 Number=34.8
60 Gif=INT(Number)
70 PRINT Gif
80 Y=44.54
90 PRINT "greatest integer function=";INT(Y)
100 END

integer EXAMPLE

10 INTEGER A,B
20 A=10
30 B=5
40 PRINT "A = ";A
50 PRINT "B = ";B
60 END

interactive EXAMPLE

1 ! The normal functions of the program control keys CLR I/O, ENTER,
PAUSE, STEP
2 ! and STOP, are disabled. The RESET key may also be disabled by
specifying the
3 ! optional RESET keyword. The keys are only disabled while the program
is running.
4
10 X=5
20 ON TIME (TIMEDATE+X) MOD 86400 GOTO Here
30 PRINT "I'll wait";X;"seconds. Keys are disabled."
40 SUSPEND INTERACTIVE
50 Loop: GOTO Loop
60 Here: RESUME INTERACTIVE
70 PRINT "Keys re-enabled."
80 END

inv EXAMPLE

10 DIM Matrix(1:3,1:3)
20 DATA 0, 2, 0, -1, 2, 0, 2, 0, 2
30 RESTORE
40 READ Matrix(*)
50 CLEAR SCREEN
60 PRINT "The matrix looks like: "
70 Prtmat(Matrix(*),3,3)
80 MAT Matrix=INV(Matrix)
90 PRINT "Matrix inverse"
100 Prtmat(Matrix(*),3,3)
110 END
120 SUB Prtmat(A(*),Lenarr,Widarr)
130! This sub prints out a matrix length of Lenarr and wide as widarr.
140! A 3x3 matrix would print like:
150! [1 2 3] Widarr = 3
160! [4 5 6]
170! [7 8 9]
180! Lenarr = 3
190 ASSIGN @Out TO CRT
200 FOR Col=1 TO Lenarr
210 OUTPUT @Out;" [";
220 FOR Row=1 TO Widarr
230 OUTPUT @Out;A(Col,Row);
240 NEXT Row
250 OUTPUT @Out;"]"
260 NEXT Col
270 ASSIGN @Out TO *
280 SUBEND

iplot EXAMPLE

10 ! Using IPLOT statements, this program draws an arrow.
20 GINIT
30 IPLOT 50,50
40 IPLOT 10,0
50 IPLOT 0,-10
60 IPLOT -3,3
70 IPLOT -20,-20
80 IPLOT -4,4
90 IPLOT 20,20
100 IPLOT -3,3
110 END

ival$ EXAMPLE

10 CLEAR SCREEN
20 I=9999
30 PRINT TAB(5),"Convert ";I;"to:"
40 FOR X=1 TO 4
50 DATA 2,8,10,16
60 READ N
70 SELECT N
80 CASE 2
90 PRINT "Binary"
100 CASE 8
110 PRINT "Octal"
120 CASE 10
130 PRINT "Base ten."
140 CASE 16
150 PRINT "Hex."
160 END SELECT
170 PRINT TAB(5),IVAL$(I,N)
180 NEXT X
190 END

ival1 EXAMPLE

10 CLEAR SCREEN
20 I$="270F"
30 OUTPUT CRT;"converting hex ";I$;" to integer";
40 PRINT IVAL(I$,16)
50 J$="9999"
60 OUTPUT CRT;"converting base 10 ";J$;" to integer";
70 PRINT IVAL(J$,10)
80 K$="23417"
90 OUTPUT CRT;"converting octal ";K$;" to integer";
100 PRINT IVAL(K$,8)
110 L$="0010011100001111"
120 OUTPUT CRT;"converting binary ";L$;" to integer";
130 PRINT IVAL(L$,2)
140 END

kbd cmode EXAMPLE

10 CLEAR SCREEN
20 KBD CMODE ON ! Changes softkey compatibility mode to Nimitz
30 Keyten$="KEY 10"
40 SET KEY 10,Keyten$! Defines softkey 10 as the text: "KEY 10"
50 END

kbd line pen EXAMPLE

10 DIM Sometext$[30]
20 CLEAR SCREEN
30 Pencolor=6
40 KBD LINE PEN Pencolor ! Sets the keyboard line pen color
50 PRINT "Input line is in Blue!"! Output in default ALPHA PEN color
60 INPUT "Input some text",Sometext$! Input should appear in Blue
for Pencolor 6
70 PRINT Sometext$
80 PRINT "Output is in default color"! All output appears in default ALPHA
PEN color
90 END

kbd$ EXAMPLE

10 CLEAR SCREEN
20 PRINT "Type ""A"""
30 ON KBD ALL GOSUB Keyhit ! defines event branch for keyboard
input
40 REPEAT
50 UNTIL Buf$="A"
60 STOP
70 Keyhit: ! Branch taken upon key press
80 Buf$=KBD$! KBD$ returns key to Buf$
90 IF Buf$="A" THEN PRINT "Thank You"
100 RETURN
110 END

kbd1 EXAMPLE

10 !While the program is running, type a key and its # will be returned to
you.
20 CONTROL KBD,203;1
30 CONTROL KBD,204;1
40 PRINT "to quit type q"
50 ON KBD GOSUB Printit
60 LOOP
70 WAIT .01
80 END LOOP
90 Printit: !
100 K$=KBD
110 IF K$="q" THEN STOP
120 PRINT NUM(K$) !Prints out the # of the key pressed.
130 RETURN
140 END

key labels pen EXAMPLE

10 CLEAR SCREEN
20 PRINT "Watch Softkey 1"
30 Blue=6 ! sets blue
40 White=1 ! sets white
50 FOR I=1 TO 100
60 IF I=20 OR I=60 THEN
70 KEY LABELS PEN Blue ! sets pen color to blue
80 SET KEY 1,"BLUE" ! sets softkey text to "Blue"
90 PRINT "Key Labels are Blue"
100 END IF
110 IF I=40 OR I=80 THEN
120 KEY LABELS PEN White ! sets pen color to white
130 SET KEY 1,"WHITE" ! sets softkey text to "White"
140 PRINT "Key Labels are White"
150 END IF
160 WAIT .025
170 NEXT I
180 SET KEY 1,"EDIT"
190 END

key labels EXAMPLE

10 CLEAR SCREEN
20 FOR I=1 TO 100
30 IF I=20 OR I=60 THEN
40 KEY LABELS OFF ! Turn key labels off
50 PRINT "Soft Key Labels are off"
60 WAIT 1
70 END IF
80 IF I=40 OR I=80 THEN
90 KEY LABELS ON ! Turn key labels on
100 PRINT "Soft Key Labels are on"
110 WAIT 1
120 END IF
130 WAIT .025
140 NEXT I
150 END

key EXAMPLE

10 CLEAR SCREEN
20 LIST KEY
30 END

knob EXAMPLE

10 ON KNOB 1 GOSUB Here
20 CLEAR SCREEN
30 FOR Loop=1 TO 10
40 WAIT 1 !Move the mouse to run program properly.
50 NEXT Loop
60 STOP
70 Here: PRINT KNOBX,KNOBY !Print out the amount moved in the x and y
directions.
80 RETURN
90 END

knobx EXAMPLE

10 ON KNOB 1 GOSUB Here
20 CLEAR SCREEN
30 FOR Loop=1 TO 10
40 WAIT 1 !Move the mouse when the program is run.
50 NEXT Loop
60 STOP
70 Here: PRINT KNOBX,KNOBY !Indicates the amount the mouse moved in the x-y
plane.
80 RETURN
90 END

knoby EXAMPLE

10 ON KNOB 1 GOSUB Here
20 CLEAR SCREEN
30 FOR Loop=1 TO 10
40 WAIT 1 !Move the mouse when the program is run.
50 NEXT Loop
60 STOP
70 Here: PRINT KNOBX,KNOBY !Indicates the amount the mouse moved in the x-y
plane.
80 RETURN
90 END

label EXAMPLE

10 CLEAR SCREEN
20 FOR Height=1 TO 12
30 MOVE 40,40
40 DISP Height
50 CSIZE Height !Change the size of the label.
60 LABEL "Hello World!"
70 WAIT 1
80 CLEAR SCREEN
90 NEXT Height
100 END

ldir EXAMPLE

10 GINIT
20 MOVE 40,40
21 Mode=1
30 !LABEL "Hello" prints huge
40 IF Mode THEN
50 DEG ! defaults to radians
60 PEN 7
70 Circ
80 END IF
90 END
100 SUB Circ
110 FOR X=0 TO 360 STEP 10
120 LDIR X
130 LABEL "Hello" ! small print
140 NEXT X
150 SUBEND

len EXAMPLE

10 DIM Name$[20]
20 CLEAR SCREEN
30 Name$="Hello"
40 Len_name=LEN(Name$)
50 PRINT Name$;" is";Len_name;"chars long - using LEN"
60 END

let EXAMPLE

10 LET X=8
20 PRINT X
30 END

lexical order is EXAMPLE

10 LEXICAL ORDER IS ASCII
20 PRINT SYSTEM$("LEXICAL ORDER IS")
30 END

lgt EXAMPLE

10 X=10000
20 COMPLEX C
30 C=CMPLX(3,5)
40 CLEAR SCREEN
50 PRINT "The Log (base 10) of";X;"is";LGT(X)
60 END

line type EXAMPLE

10 GINIT
20 PEN 6
30 FOR Loop=1 TO 10
40 MOVE 40+(Loop*10),40
50 DRAW 40+(Loop*10),80
60 DISP "Line type: ";Loop
70 PAUSE
80 LINE TYPE Loop
90 NEXT Loop
100 END

linput EXAMPLE

10 DIM Array$(3)[100]
20 LINPUT "Please enter a name",Array$(I)
30 PRINT Array$(*)
40 END

list bin EXAMPLE

10 CLEAR SCREEN
20 LIST BIN
30 END

list key EXAMPLE

10 CLEAR SCREEN
20 LIST KEY
30 END

list EXAMPLE

10 CLEAR SCREEN
20 LIST 20,30
30 END

load bin EXAMPLE

10 LOAD BIN "SERIAL"
20 LIST BIN
30 END

load key EXAMPLE

10 CLEAR SCREEN
20 STORE KEY "keys2"
30 READ KEY 1,Str$
40 PRINT "Key 1 was ";Str$;" now is QUIT -- Please type CONT"
50 SET KEY 1,"QUIT"
60 PAUSE
70 LOAD KEY "keys2"
80 PRINT "Keys are returned to normal."
90 PURGE "keys2"
100 END

load EXAMPLE

10 CLEAR SCREEN
20 PRINT "CONT to LOAD file."
30 PAUSE
40 LOAD "print.prg"
50 END

loadsub EXAMPLE

10 LOADSUB "New" FROM "grid.prg"
20 PAUSE
30 PRINT "Paused. Press CONT"
40 New
50 PRINT "All finished."
60 END

locator EXAMPLE

10 CLEAR SCREEN
20 SET LOCATOR 0,0
30 WHILE KBD$=""
40 READ LOCATOR X,Y,Stat$
50 PRINT X,Y
60 PRINT "Status: ";Stat$;" - length: ";LEN(Stat$)
70 WAIT 1
80 END WHILE
90 END

lock EXAMPLE

10 CLEAR SCREEN
20 PRINT "*** Lock Test ****"
30 PRINT
40 CREATE "test.txt",100
50 DIM Test$[100]
60 ASSIGN @File TO "test.txt";FORMAT ON
70 PRINT "CAT after assignment..."
80 CAT "test.txt";NO HEADER
90 OUTPUT @File;"This is the contents of test.txt"
100 RESET @File
110 ENTER @File;Test$
120 PRINT
130 PRINT Test$
140 PRINT
150 LOCK @File;CONDITIONAL Error !This locks a file
while you are working on it.
160 PRINT "CAT after lock..."
170 CAT "test.txt";NO HEADER
180 PRINT
190 PRINT "Lock result is";Error
200 UNLOCK @File !This unlocks the
file.
210 PRINT
220 PRINT "CAT after unlock..."
230 CAT "test.txt";NO HEADER
240 ASSIGN @File TO * !This will also
unlock the file. Comment out the unlock
250 PRINT !statement to show
this.
260 PRINT "CAT after file is closed..."
270 CAT "test.txt";NO HEADER
280 PURGE "test.txt"
290 END

log EXAMPLE

10 CLEAR SCREEN
20 IF LOG(EXP(65))<>65 THEN PRINT "Test failed."
30 RAD ! Complex calculations are always done in radians!
40 COMPLEX C
50 C=CMPLX(4,7)
60 X=REAL(LOG(C))
70 Y=LOG(ABS(C))
80 PRINT X;"=";Y;"?"
90 IF X=Y THEN
100 PRINT "True"
110 ELSE
120 PRINT "False - error in documentation."
130 END IF
140 X=IMAG(LOG(C))
150 Y=ARG(C)
160 PRINT X;"=";Y;"?"
170 IF X=Y THEN
180 PRINT "True"
190 ELSE
200 PRINT "False - error in documentation."
210 END IF
220 END

loop EXAMPLE

10 CLEAR SCREEN
20 LOOP
30 PRINT "Iterator: ";Counter
40 PRINT Counter MOD 3
50 Counter=Counter+1
60 EXIT IF Counter=5 OR (Counter MOD 4)=3
70 PRINT "Not finished."
80 END LOOP
90 PRINT "All done."
100 END

lorg EXAMPLE

10 GINIT
20 CLEAR SCREEN
30 FOR X=1 TO 9
40 MOVE 70,40
50 LORG X
60 LABEL RPT$(" ",5)&VAL$(X)&"Hi"&RPT$(" ",5)
70 NEXT X
80 END

lwc$ EXAMPLE

10 CLEAR SCREEN
20 Test$="HELLO"
30 PRINT Test$;" is in all caps."
40 Test$=LWC$(Test$)
50 PRINT "LCW$ turns them all lower case: ";Test$
60 END

mass storage is EXAMPLE

10 ! Comments: MASS STORAGE IS, MSI, CD work correctly. Both MSI
20 ! and CD convert to MASS STORAGE IS.
30 CLEAR SCREEN
40 PRINT "*** CD or MSI TEST ****"
50 PRINT "MSI: ",SYSTEM$("MSI")
60 MASS STORAGE IS "C:\"
70 PRINT "MSI: ",SYSTEM$("MSI")
80 MASS STORAGE IS "d:\"
90 PRINT "MSI: ",SYSTEM$("MSI")
100 END

mat reorder EXAMPLE

10 OPTION BASE 1
20 DIM Matrix(3,3),Vector(3)
30 DATA 1, 2, 3, 4, 5, 6, 7, 8, 9, 3, 2, 1
40 RESTORE
50 READ Matrix(*),Vector(*)
60 CLEAR SCREEN
70 PRINT "The matrix looks like: "
80 Prtmat(Matrix(*),3,3)
90 MAT REORDER Matrix BY Vector,2
100 PRINT "MAT reorder"
110 Prtmat(Matrix(*),3,3)
120 END
130 SUB Prtmat(A(*),Lenarr,Widarr)
140! This sub prints out a matrix length of Lenarr and wide as widarr.
150! A 3x3 matrix would print like:
160! [1 2 3] Widarr = 3
170! [4 5 6]
180! [7 8 9]
190! Lenarr = 3
200 ASSIGN @Out TO CRT
210 FOR Col=1 TO Lenarr
220 OUTPUT @Out;" [";
230 FOR Row=1 TO Widarr
240 OUTPUT @Out;A(Col,Row);
250 NEXT Row
260 OUTPUT @Out;"]"
270 NEXT Col
280 ASSIGN @Out TO *
290 SUBEND

mat search EXAMPLE

10 CLEAR SCREEN
20 OPTION BASE 1
30 DIM Numbers(11)
40 DATA 6, 1, 9, 2, 8, 3, 8, 9, 1, 7, 5
50 RESTORE
60 READ Numbers(*)
70 PRINT "The numbers read:"
80 PRINT Numbers(*)
90 PRINT
100
110 MAT SEARCH Numbers,MAX;Max
120 MAT SEARCH Numbers,LOC MAX;Loc_max
130 MAT SEARCH Numbers,MIN;Min
140 MAT SEARCH Numbers,LOC MIN;Loc_min
150 MAT SEARCH Numbers,# LOC (Max);Num_max
160 MAT SEARCH Numbers,# LOC (Min);Num_min
170 MAT SEARCH Numbers,LOC (<2);Loc_num,4
180
190 PRINT "Maximum value: ";Max
200 PRINT "It first occurs in element: ";Loc_max
210 PRINT "It occurs ";Num_max;" times."
220 PRINT "Minimum value: ";Min
230 PRINT "It is found in element: ";Loc_min
240 PRINT "And occurs ";Num_min;" times."
250 PRINT "First occurence of a number < 2 starting from element 4"
260 PRINT "is in array element: ";Loc_num
270 END

mat sort EXAMPLE

10 CLEAR SCREEN
20 PRINT "*** TEST ****"
30 DIM A(1:4),B(3)
40 DATA 5, 9, 2, 8, 6, 9, 0, 1
50 RESTORE
60 READ A(*)
70 PRINT "A = ";A(*)
80 MAT SORT A(*)
90 PRINT "Array A sorted"
100 PRINT "A = ";A(*)
110 MAT SORT A(*) DES
120 PRINT "Array A sorted in descending order."
130 PRINT "A = ";A(*)
140 PRINT
150 READ B(*)
160 PRINT "B = ";B(*)
170 MAT SORT B(*) TO B
180 PRINT "Sorting B to A gives:"
190 PRINT "B = ";B(*)
200 END

mat EXAMPLE

10 CLEAR SCREEN
20 PRINT "*** TEST ****"
30 DIM A(1:4)
40 DATA 5, 9, 2, 8
50 RESTORE
60 READ A(*)
70 PRINT "A = ";A(*)
80 MAT SORT A(*)
90 PRINT "Array A sorted"
100 PRINT "A = ";A(*)
110 MAT SORT A(*) DES
120 PRINT "Array A sorted in descending order."
130 PRINT "A = ";A(*)
140 END

max EXAMPLE

10 ! This is your basic array usage.
20 DIM A(1:4)
30 DATA 5, 6, 7, 3
40 RESTORE
50 READ A(*)
60 PRINT "The maximum value in the array is";MAX(A(*))
70 END

maxlen EXAMPLE

10 DIM Name$[20]
20 CLEAR SCREEN
30 Name$="Hello"
40 Len_name=MAXLEN(Name$) !Returns the max length the string can be
according to DIM.
50 PRINT Name$;" is";Len_name;"chars long - using MAXLEN"
60 Len_name=LEN(Name$)
70 PRINT Name$;" is";Len_name;"chars long - using LEN"
80 END

maxreal EXAMPLE

10 CLEAR SCREEN
20 PRINT "The largest positive real number is";MAXREAL
30 END

merge alpha EXAMPLE

10 MERGE ALPHA WITH GRAPHICS
20 CLEAR SCREEN
30 PRINT "With Alpha and Graphics merged, the text and"
40 PRINT "graphics should disappear with a CLEAR SCREEN"
50 PAUSE
60 MOVE 0,60
70 AREA PEN 4
80 RECTANGLE 30,30,FILL
90 WAIT 2
100 SEPARATE ALPHA FROM GRAPHICS
110 CLEAR SCREEN
120 PRINT "This text should disappear with a CLEAR SCREEN"
130 PRINT "The square should not be erased"
140 MOVE 0,60
150 AREA PEN 7
160 RECTANGLE 30,30,FILL
170 WAIT 2
180 CLEAR SCREEN
190 WAIT 1
200 PRINT "Notice how the square was not erased!"
210 END

min EXAMPLE

10 ! This is your basic array usage.
20 DIM A(1:4)
30 DATA 5, 6, 7, 3
40 RESTORE
50 READ A(*)
60 PRINT "The minimum value in the array is";MIN(A(*))
70 END

minreal EXAMPLE

10 CLEAR SCREEN
20 PRINT "The smallest positive real number is";MINREAL
30 END

mod EXAMPLE

10 CLEAR SCREEN
20 X=5
30 Y=5
40 PRINT "The";X;"MOD";Y;"is";X MOD Y
50 PRINT "The";X;"MODULO";Y;"is";X MODULO Y
60 END

modulo EXAMPLE

10 CLEAR SCREEN
20 INTEGER X,Y
30 X=5
40 Y=-85
41 PRINT X-Y*(INT(X/Y))
50 PRINT "The";X;"MOD ";Y;"is ";X MOD Y
60 PRINT "The";X;"MODULO ";Y;"is ";X MODULO Y
70 END

move EXAMPLE

10 CLEAR SCREEN
20 GINIT
30 MOVE 20,20
40 RECTANGLE 10,10
50 MOVE 50,50
60 POLYGON 10
70 PRINT "test complete."
80 END

msi EXAMPLE

10 ! Comments: MASS STORAGE IS, MSI, CD work correctly. Both MSI
20 ! and CD convert to MASS STORAGE IS.
30 CLEAR SCREEN
40 PRINT "*** CD or MSI TEST ****"
50 PRINT "MSI: ",SYSTEM$("MSI")
60 MASS STORAGE IS "C:\"
70 PRINT "MSI: ",SYSTEM$("MSI")
80 MASS STORAGE IS "D:\"
90 PRINT "MSI: ",SYSTEM$("MSI")
100 END

next EXAMPLE

10 FOR J=40 TO 500 STEP 20
20 PRINT J
30 NEXT J
40 END

not EXAMPLE

10 CLEAR SCREEN
20 PRINT "Not 1 is";NOT 1
30 PRINT "Not 0 is";NOT 0
40 END

npar EXAMPLE

10 CLEAR SCREEN
20 PRINT "*** Optional parameter TEST ****"
30 Bigparams(1,2)
40 STOP !NPAR counts the # of parameters sent to a SUB.
50 END
60 SUB Bigparams(A,B, OPTIONAL C,D)
70 PRINT NPAR;"parameters sent to SUB"
80 SUBEND

num1 EXAMPLE

10 CLEAR SCREEN
20 Str$="Hello"
30 PRINT "NUM returns the ASCII value of the "
40 PRINT "first character in a string."
50 PRINT
60 PRINT "For example, the string: ";Str$
70 X=NUM(Str$)
80 PRINT "The value returned was: ";X;"or: ";CHR$(X)
90 END

off cycle1 EXAMPLE

10 ON CYCLE 5 GOTO Here !Wait 5 seconds then go to line 160.
20 Start=TIMEDATE
30 CLEAR SCREEN
40 LOOP
50 PRINT "Waiting"
60 WAIT 1
70 IF TIMEDATE-5>Start THEN !If it waits longer than 5 seconds, then test
will fail.
80 PRINT "Cycle is off."
90 OFF CYCLE
100 END IF
110 IF TIMEDATE-6>Start THEN
120 PRINT "Forcing stop."
130 STOP
140 END IF
150 END LOOP
160 Here: PRINT "OFF CYCLE worked correctly."
170 END

off delay EXAMPLE

10 CLEAR SCREEN
20 ON DELAY 3 GOTO Here !Wait 3 seconds and then go to line 100.
30 PRINT "ON Delay"
40 WAIT 2
50 OFF DELAY !Turn off the branch event to line 100.
60 PRINT "OFF Delay"
70 WAIT 2
80 PRINT "Test passed."
90 STOP
100 Here: PRINT "OFF DELAY did not work properly."
110 END

off end EXAMPLE

10 CLEAR SCREEN
20 PRINT "*** output TEST ****"
30 CREATE "test.txt",0
40 ASSIGN @File TO "test.txt";FORMAT ON
50 ON END @File GOTO Here
60 OUTPUT @File;"This is a test"
70 OUTPUT @File;"This is a test - line 2"
80 RESET @File
90 FOR Loop=1 TO 5
100 ENTER @File;Test$
110 PRINT Test$,Loop
120 ON ERROR GOTO 190
130 IF Loop=1 THEN OFF END @File !This causes an error after first loop
iteration.
140 NEXT Loop
150 Here: !
160 PRINT "OFF END command did not work properly"
170 ASSIGN @File TO *
180 STOP
190 OFF ERROR
200 ASSIGN @File TO *
210 PRINT "Test Passed"
220 PURGE "test.txt"
230 END

off error EXAMPLE

10 !This program should cause an error.
20 ON ERROR GOTO Here
30 PRINT "I want to get an error."
40 CAUSE ERROR 80
50 STOP
60 Here: PRINT "Program should reach here when it errors."
70 CLEAR ERROR
80 END

off intr EXAMPLE

10 RESET 7
30 Topp: ENABLE INTR 7;2 ! RESPONDS TO SRQ
40 ON INTR 7,1 GOTO Intrr
50 ON TIMEOUT 7,30 GOTO Stopp
60 LOOP
70 OUTPUT 720;"HELLO"
80 END LOOP
90 STOP
100 Stopp:!
110 PRINT "TIMED OUT"
120 STOP
130 Intrr:!
140 PRINT "INTERRUPTED"
150 OFF INTR
160 GOTO Topp
170 END

off kbd EXAMPLE

10 CLEAR SCREEN
20 PRINT "Type ""A"""
30 ON KBD ALL GOSUB Keyhit ! defines event branch for keyboard
input
40 REPEAT
50 IF Buf$="x" THEN ! Type x to use OFF KBD.
60 OFF KBD
70 Disabled=500
80 PRINT "OFF KBD."
90 Buf$="A"
100 ELSE
110 DISP Buf$
120 END IF
130 UNTIL Buf$="A"
140 STOP
150 Keyhit: ! Branch taken upon key press
160 Buf$=KBD$! KBD$ returns key to Buf$
170 IF Buf$="A" THEN PRINT "Thank You"
180 RETURN
190 END

off key EXAMPLE

10 ON KEY 7 GOTO Here
20 ON DELAY 10 GOTO Stophere
30 PRINT "Press F7 ONLY three times in 10 seconds."
40 LOOP
50 Loop: GOTO Loop
60 Here: PRINT "F7 pressed"
70 Counter=Counter+1
80 IF Counter=3 THEN OFF KEY
90 END LOOP
100 Stophere: PRINT "OFF KEY works properly."
110 END

off knob EXAMPLE

10 ON KNOB 1 GOSUB Here
20 DISP "Move the mouse"
30 CLEAR SCREEN
40 FOR Loop=1 TO 10
50 WAIT 1
60 IF Loop=5 THEN
70 OFF KNOB
80 PRINT "OFF KNOB - no more mouse movements accepted."
90 END IF
100 PRINT Loop
110 NEXT Loop
120 STOP
130 Here: PRINT KNOBX,KNOBY
140 RETURN
150 END

off signal EXAMPLE

10 ON SIGNAL 5 GOTO Here
20 Loop:!
30 FOR X=1 TO 10
40 PRINT X
50 IF X=9 THEN SIGNAL 5
60 IF X=5 THEN OFF SIGNAL
70 NEXT X
80 Here: IF X=11 THEN
90 PRINT "OFF SIGNAL worked."
100 ELSE
110 PRINT X
120 PRINT "OFF SIGNAL did not function properly."
130 END IF
140 PRINT "Test complete"
150 END

off time EXAMPLE

10 X=5
20 ON TIME (TIMEDATE+X) MOD 86400 GOTO Here !After 5 seconds, go to line
80.
30 PRINT "I'll wait";X;"seconds."
40 WAIT 2
50 OFF TIME
60 PRINT "OFF TIME worked properly."
70 STOP
80 Here: PRINT "Should never reach this point."
90 END

off timeout EXAMPLE

10 ! LOAD BIN "SERIAL32"
20 ON TIMEOUT 9,5 GOTO L50
30 ON DELAY 3 GOTO L22
40 L20: PRINT "WAITING..."
50 L21: ENTER 9;X$
60 L22: OFF TIMEOUT
70 PRINT "Off time out."
80 STOP
90 PRINT X$
100 GOTO L20
110 L50: PRINT "IT TIMED OUT"
120 END

off EXAMPLE

10 ! CRT Register: 7
20 ! Get the graphics mode status.
30 CLEAR SCREEN
40 GRAPHICS OFF
50 PRINT "Graphics Mode flag is";STATUS(CRT,7)
60 END !Should print out 0.

on cycle EXAMPLE

10 ON CYCLE 5 GOTO Here !After 5 seconds, go to line 70.
20 CLEAR SCREEN
30 LOOP
40 PRINT "Still waiting"
50 WAIT 1
60 END LOOP
70 Here: PRINT "ON CYCLE worked."
80 END

on delay EXAMPLE

10 CLEAR SCREEN
20 ON DELAY 3 GOTO Here ! Wait 3 seconds.
30 PRINT "I shall wait 3 seconds."
40 Loop: GOTO Loop
60 Here: PRINT "ON DELAY worked."
70 END

on end EXAMPLE

10 CLEAR SCREEN
20 PRINT "*** output TEST ****"
30 CREATE "test.txt",0
40 ASSIGN @File TO "test.txt";FORMAT ON
50 ON END @File GOTO Here
60 OUTPUT @File;"This is a test","Second line"
70 RESET @File
80 FOR Loop=1 TO 5
90 ENTER @File;Test$
100 PRINT Test$,Loop
110 NEXT Loop
120 Here: !
130 PRINT "End of file reached."
140 ASSIGN @File TO *
150 PURGE "test.txt"
160 END

on eot EXAMPLE

10 DIM Buff$[60] BUFFER !for this program, you need to be hooked up
serialy to another
20 DIM A$[60] !computer with one running this program, and the
other sending
30 CLEAR SCREEN !data to this program through an output statement.
40 RESET 9
50 PRINT "*** End Of Transfer Test ***"
60 ASSIGN @Buf TO BUFFER Buff$
70 ASSIGN @In TO 9
80 ON EOT @In GOTO Alldone
90 TRANSFER @In TO @Buf
100 ENTER Buff$;A$
110 PRINT A$
120 Loop: GOTO Loop
130 Alldone: PRINT "The transfer is completed."
140 PRINT "This is the contents of the buffer"
150 PRINT Buff$
160 END

on error EXAMPLE

10 ON ERROR GOTO Here
20 CAUSE ERROR 0
30 PRINT "ON ERROR did not work."
40 STOP
50 Here: PRINT "ON ERROR functioned properly."
60 END

on intr EXAMPLE

10 CLEAR SCREEN
30 PRINT "Press the SRQ"
40 RESET 7
50 ENABLE INTR 7;2 ! RESPONDS TO SRQ
60 ON INTR 7,1 GOTO Intrr
70 ON DELAY 30 GOTO Stopp
80 LOOP
90 OUTPUT 720;"HELLO"
100 END LOOP
110 STOP
120 Stopp:!
130 PRINT "TIMED OUT"
140 STOP
150 Intrr:!
160 PRINT "INTERRUPTED"
170 END

on kbd1 EXAMPLE

10 CONTROL KBD,203;1
20 CONTROL KBD,204;1
30 ON KBD ALL GOSUB Keyhit ! defines event branch for keyboard input
40 CLEAR SCREEN
50 PRINT "Type A"
60 REPEAT
70 UNTIL Buf$="A"
80 STOP
90 Keyhit: ! Branch taken upon key press
100 Buf$=KBD$! KBD$ returns key to Buf$
110 IF Buf$="A" THEN
120 PRINT "Thank You"
130 DISP "Test complete."
140 RETURN
150 ELSE
160 BEEP
170 DISP Buf$
180 RETURN
190 END IF
200 END

on key EXAMPLE

10 ON KEY 7 GOTO Here
20 LOOP
30 PRINT "Press F7"
40 Loop: GOTO Loop
50 Here: PRINT "ON KEY worked properly."
60 Counter=Counter+1
70 EXIT IF Counter=1
80 END LOOP
90 END

on knob EXAMPLE

10 ON KNOB 1 GOSUB Here
20 CLEAR SCREEN
30 FOR Loop=1 TO 10
40 WAIT 1 !Move the mouse when the program is run.
50 NEXT Loop
60 STOP
70 Here: PRINT KNOBX,KNOBY !Indicates the amount the mouse moved in the x-y
plane.
80 RETURN
90 END

on signal EXAMPLE

10 ON SIGNAL 5 GOTO Here
20 Loop:!
30 FOR X=1 TO 10
40 PRINT X
50 IF X=5 THEN SIGNAL 5
60 NEXT X
70 Here: IF X=5 THEN PRINT "ON SIGNAL worked."
80 PRINT "Test complete"
90 END

on time EXAMPLE

10 X=5
20 ON TIME (TIMEDATE+X) MOD 86400 GOTO Here
30 PRINT "I'll wait";X;"seconds."
40 Loop: GOTO Loop
50 Here: PRINT "ON TIME worked properly."
60 END

on timeout EXAMPLE

10 ! LOAD BIN "SERIAL32"
20 ON TIMEOUT 9,5 GOTO L50 ! Wait 5 seconds and then timeout.
30 L20: PRINT "WAITING..."
40 ENTER 9;X$
50 PRINT X$
60 GOTO L20
70 L50: PRINT "IT TIMED OUT"
80 END

on EXAMPLE

10 X=2
20 ON X GOTO L1,L2
30 L1: PRINT "Line one."
40 L2: PRINT "Line two."
50 END

option base EXAMPLE

10 DATA 0, 1, 2, 3, 4, 5
20 CLEAR SCREEN
30 OPTION BASE 0
40 PRINT "Option base is 0"
50 REAL A(5)
60 PRINT "Declared array 5 elements."
70 READ A(*)
80 PRINT A(*)
90 PRINT "Printed 6 items."
100 PRINT
110 New
120 END
130 SUB New
140 DATA 1, 2, 3
150 OPTION BASE 1
160 PRINT "Option base is 1"
170 REAL A(3)
180 PRINT "Declared array of 3."
190 READ A(*)
200 PRINT A(*)
210 SUBEND

optional EXAMPLE

10 CLEAR SCREEN
20 PRINT "5 + 8 =";FNAdd(5,8)
30 PRINT FNMessage$
40 PRINT FNMessage$("Hello")
50 END
60 DEF FNAdd(A,B)
70 RETURN A+B
80 FNEND
90 DEF FNMessage$(OPTIONAL String$)
100 IF NPAR=0 THEN RETURN "OPTIONAL parameter not used."
110 RETURN "OPTIONAL parameter used."
120 FNEND

or EXAMPLE

10 ! This program prints the truth table for an OR funtion.
20 DATA 0,0,0,1,1,0,1,1
30 RESTORE
40 CLEAR SCREEN
50 PRINT TAB(10),"OR test"
60 PRINT " J"," K","J OR K"
70 FOR L=1 TO 4
80 READ J,K
90 PRINT J,K,J OR K
100 NEXT L
110 END

out EXAMPLE

10 OUT &H300,64+16
20 END

outp EXAMPLE

10 CLEAR SCREEN
20 PRINT INP(&H3F8)
30 PRINT INP(&H3E8)
40 PRINT INPW(&H3F8)
50 PRINT INPW(&H3E8)
60 OUT (&H3F8),3
70 PRINT INP(&H3F8)
80 OUTW (&H3F8),45
90 PRINT INPW(&H3F8)
100 END

output EXAMPLE

10 DIM R(1),A$(1)[1]
20 R(0)=-1
30 R(1)=+1
40 MAT A$=("A")
50 ASSIGN @I TO CRT
60 OUTPUT @I;1.E+5,1.E+7
70 OUTPUT @I;1;-1
80 OUTPUT @I;R(*),
90 OUTPUT @I;CMPLX(1,1.23456789012345E+7)
100 OUTPUT @I;CMPLX(1,1);
110 OUTPUT @I;"B";"C","D"
120 OUTPUT @I;A$(*);
130 END

outw EXAMPLE

10 OUTW Base+3,&HF001
20 END

pass control EXAMPLE

10 PASS CONTROL 720
20 END

pause EXAMPLE

10 PRINT "Pausing. Press CONT to continue..."
20 PAUSE
30 PRINT "I'm done"
40 END

pdir EXAMPLE

10 CLEAR SCREEN
20 GINIT
30 MOVE 40,40
40 PDIR PI/4 !radians
50 RECTANGLE 10,20
60 DISP "1"
70 WAIT 1
80 AREA PEN 3
90 RECTANGLE 10,-20,FILL
100 DISP "2"
110 WAIT 1
120 PEN 2
130 RECTANGLE -10,-20,EDGE
140 DISP "3"
150 WAIT 1
160 AREA PEN 7
170 PEN 8
180 RECTANGLE -10,20,FILL,EDGE
190 DISP "4"
200 WAIT 1
210 DISP
220 END

pen EXAMPLE

10 GINIT
20 GCLEAR
30 PLOTTER IS CRT,"INTERNAL";COLOR MAP
40 MOVE 40,40
50 AREA PEN 6
60 FOR L=-5 TO 5
70 DISP L
80 PEN L
90 RECTANGLE 90,30,FILL,EDGE
100 WAIT 1
110 NEXT L
120 END

penup EXAMPLE

10 CLEAR SCREEN
20 PLOT 40,40,-1
30 PENUP
40 PLOT 80,80,2
50 PLOT 80,90
60 END

pi EXAMPLE

10 PRINT "The value of pi is close to ";PI
20 END

pivot EXAMPLE

10 CLEAR SCREEN
20 GINIT
30 MOVE 40,40
40 DEG
50 PIVOT 45
60 RECTANGLE 10,20
70 DISP "1"
80 WAIT 1
90 AREA PEN 3
100 RECTANGLE 10,-20,FILL
110 DISP "2"
120 WAIT 1
130 PEN 2
140 RECTANGLE -10,-20,EDGE
150 DISP "3"
160 WAIT 1
170 AREA PEN 7
180 PEN 8
190 RECTANGLE -10,20,FILL,EDGE
200 DISP "4"
210 WAIT 1
220 DISP
230 END

plot EXAMPLE

10 CLEAR SCREEN
20 PLOT 40,10,-1 ! lower pen before move
30 PENUP
40 PLOT 80,80 ! lower after move, default is 1
50 PLOT 80,90,0 ! raise after move
60 PLOT 90,80! pen is down
70 PLOT 100,60,-1 ! lower pen before move
80 PLOT 85,40! pen is down
90 PLOT 0,0,-2 ! raise before move
100 END

plotter is EXAMPLE

10 PLOTTER IS CRT,"INTERNAL";COLOR MAP
20 AREA PEN 6
30 RECTANGLE 30,40,FILL,EDGE
40 END

polygon EXAMPLE

10 CLEAR SCREEN
20 MOVE 40,40
30 POLYGON 5
40 POLYGON 10,6
50 POLYGON 15,12,5
60 MOVE 80,40
70 POLYGON 20,FILL
80 MOVE 30,80
90 POLYGON 15,FILL,EDGE
100 END

polyline EXAMPLE

10 CLEAR SCREEN
20 MOVE 40,40
30 POLYLINE 5
40 POLYLINE 10,6
50 POLYLINE 15,12,5
60 END

pos EXAMPLE

10 CLEAR SCREEN
20 Name$="Hello"
30 PRINT "Using the string ";Name$
40 PRINT "The position where 'll' is located is"
50 PRINT POS(Name$,"ll")
60 END

print pen EXAMPLE

10 CLEAR SCREEN
20 PLOTTER IS CRT,"INTERNAL";COLOR MAP
30 PRINT "*** TEST ****"
40 FOR Numloop=0 TO 25
50 PRINT PEN Numloop
60 PRINT "*";Numloop
70 NEXT Numloop
80 END

print EXAMPLE

10 CLEAR SCREEN
20 PRINT "*** Print TEST ****"
30 PRINT "[TAB]";TAB(15);"15 spaces"
40 PRINT TABXY(5,5);"TABXY test"
50 END

printall EXAMPLE

10 CREATE "test.txt",0
20 PRINTALL IS "test.txt"
30 PRINT "Hello, this is a test."
40 PRINT SYSTEM$("I am Bill Gates")
50 PAUSE
60 PURGE "test.txt"
70 PRINT "File purged."
80 END

printer is EXAMPLE

10 CLEAR SCREEN
20 PRINT PRT
30 PRINTER IS PRT
40 PRINT "Hello"
50 PRINTER IS CRT
60 PRINT "Hello"
70 END

priority EXAMPLE

10 CLEAR SCREEN
20 FOR Loop=0 TO 15
30 SYSTEM PRIORITY Loop
40 PRINT "System Priority: "&SYSTEM$("SYSTEM PRIORITY")
50 NEXT Loop
60 Testme
70 PRINT "Back in main."
80 PRINT "Priority: "&SYSTEM$("SYSTEM PRIORITY")
90 END
100 SUB Testme
110 PRINT "In test SUB; setting priority to 1"
120 SYSTEM PRIORITY 1
130 PRINT "Priority: "&SYSTEM$("SYSTEM PRIORITY")
140 SUBEND

protect EXAMPLE

10 CLEAR SCREEN
20 MASS STORAGE IS "C:\"
30 PRINT "Creating file"
40 SAVE "junk.XXX"
50 WAIT 2
60 CLEAR SCREEN
70 PROTECT "junk.XXX","R" !Protect the file as a read-only file.
80 PRINT "Making junk.XXX a read-only file."
90 WAIT 3
100 CLEAR SCREEN
110 PRINT "Unprotecting junk.XXX"
120 PROTECT "junk.XXX",""
130 WAIT 2
140 PURGE "junk.XXX"
150 PRINT "File purged"
160 END

pround EXAMPLE

10 Number=656576.2346516
20 CLEAR SCREEN
30 PRINT "Rounding the number:";Number
40 FOR Roundto=-6 TO 6
50 PRINT Roundto,PROUND(Number,Roundto)
60 NEXT Roundto
70 END

prt EXAMPLE

10 CLEAR SCREEN
20 PRINT PRT
30 PRINTER IS PRT
40 PRINT "Hello"
50 END

purge EXAMPLE

10 CLEAR SCREEN
20 PRINT "Saving code. Creating file"
30 SAVE "file.txt"
40 CAT "*.txt";NAMES
50 PRINT "Press CONT to purge file."
60 PAUSE
70 PRINT "Now, I will purge it."
80 PURGE "file.txt"
90 CAT "*.txt";NAMES
100 PRINT "File purged."
110 END

quit EXAMPLE

10 PRINT "If this works right after you CONT, the HTBasic child window will
close."
20 PRINT "Program paused..."
30 PAUSE
40 QUIT
50 END

quit all EXAMPLE

10 PRINT "If this works right after you CONT, HTBasic will quit."
20 PRINT "Program paused..."
30 PAUSE
40 QUIT ALLr
50 END

rad EXAMPLE

10 CLEAR SCREEN
20 PRINT "Testing the trigonometry mode."
30 OUTPUT CRT;"We are currently in";
40 OUTPUT CRT;" radian ";
50 PRINT "mode."
60 PRINT
70 PRINT "Please enter the desired input as mentioned below."
80 INPUT "Radians to convert to degrees",A
90 A=A*180/PI
100 PRINT "That is ";A;"degrees."
110 END

randomize EXAMPLE

10 Count=0
20 RANDOMIZE
30 CLEAR SCREEN
40 REPEAT
50 WAIT .5
60 Number=INT(RND*100)
70 PRINT Number
80 Count=Count+1
90 UNTIL Count=10
100 PRINT "Random number test done."
110 END

rank EXAMPLE

10 OPTION BASE 1
20 DIM A(16,6)
30 DIM B(5,7,3)
40 CLEAR SCREEN
50 Pass_a(A(*))
60 Pass_a(B(*))
70 END
80 SUB Pass_a(REAL A(*))
90 L=RANK(A)
100 PRINT "The array passed in has the following rank."
110 PRINT "Rank: ";L
120 SUBEND

ratio EXAMPLE

10 CLEAR SCREEN
20 PRINT "X width:",CHRX,"y height:",CHRY,"Ratio:",RATIO
30 END

read key EXAMPLE

10 ! Comments: Uncomment the SET KEY option if no
20 ! softkeys have been defined. WARNING: Do not
30 ! uncomment if you do not want your softkeys
40 ! changed!!!
50 DIM A$[30]
60 CLEAR SCREEN
70 PRINT "*** TEST ****"
80 FOR Nloop=1 TO 22
90 !SET KEY Nloop,"CLS"
100 READ KEY Nloop,A$
110 PRINT Nloop,A$
120 WAIT 1
130 NEXT Nloop
140 END

read label EXAMPLE

10 CLEAR SCREEN
20 MASS STORAGE IS "d:"
30 READ LABEL Id$
40 READ LABEL Id2$ FROM "c:"
50 PRINT SYSTEM$("MSI");Id$,"C:\";Id2$
60 END

read locator EXAMPLE

10 CLEAR SCREEN
20 SET LOCATOR 0,0
30 WHILE KBD$=""
40 READ LOCATOR X,Y,Stat$
50 PRINT X,Y
60 PRINT "Status: ";Stat$;" - length: ";LEN(Stat$)
70 WAIT 1
80 END WHILE
90 END

read EXAMPLE

10 DIM Array(4)
20 DATA 1, 2, 3, 4, 5
30 RESTORE
40 CLEAR SCREEN
50 READ Array(*)
60 PRINT "The data read into the array: "
70 PRINT Array(*)
80 END

readio EXAMPLE

10 ! LOAD BIN "SERIAL32"
20 LIST BIN
30 WAIT 1
40 CLEAR SCREEN
50 ON ERROR GOTO Recover
60 FOR I=0 TO 6
70 PRINT READIO(9,I);I
80 DISP I
90 Recover: DISP I
100 NEXT I
110 OFF ERROR
120 WRITEIO 9,1;2400
130 PRINT READIO(9,1)
140 END

real EXAMPLE

10 COMPLEX C
20 C=CMPLX(5,7)
30 PRINT "The real part of C is";REAL(C)
40 INTEGER A
50 A=7
60 PRINT INT(A*PI)
70 PRINT REAL(A*PI)
80 END

recover EXAMPLE

10 CLEAR SCREEN
20 PRINT "Testing the ON ERROR RECOVER statement."
30 ON ERROR RECOVER Here
40 Forceerr
50 Here: PRINT "RECOVER works properly."
60 END
70 SUB Forceerr
80 PRINT "Forcing an error"
90 PRINT SYSTEM$("WHO IS BILL GATES") !gives error 401
100 SUBEND

rectangle EXAMPLE

10 CLEAR SCREEN
20 GINIT
30 MOVE 40,40
40 RECTANGLE 10,20
50 DISP "1"
60 WAIT 1
70 AREA PEN 3
80 RECTANGLE 10,-20,FILL
90 DISP "2"
100 WAIT 1
110 PEN 2
120 RECTANGLE -10,-20,EDGE
130 DISP "3"
140 WAIT 1
150 AREA PEN 7
160 PEN 8
170 RECTANGLE -10,20,FILL,EDGE
180 DISP "4"
190 WAIT 1
200 DISP
210 END

redim EXAMPLE

10 DIM Array(14)
20 DATA 1, 2, 3, 4, 5, 6, 8, 4, 56, 678, 678, 65, 4, 8, 6, 0, 12, 2
30 RESTORE
40 CLEAR SCREEN
50 READ Array(*)
60 PRINT "The sum of the array: ";SUM(Array)
70 REDIM Array(4:10)
80 PRINT "Array redimensioned to values 4 to 10. Sum:";SUM(Array)
90 END

rem EXAMPLE

1 REM A REM statement is used to insert comments into programs.
2 REM The REM statement may contain any text you wish.
3 REM It is useful in explaining what the program is doing.

10 CLEAR SCREEN
20 REM Means, I can stick a remark here.
30 PRINT "Notice the REM statement in the code?"
40 !It works just like the "!" symbol.
50 END

rename EXAMPLE

10 CLEAR SCREEN
20 PRINT "Creating file"
30 SAVE "file.XXX"
40 CAT "*.XXX";NAMES
50 WAIT 2
60 PRINT "Now, I will rename it to"
70 RENAME "file.XXX" TO "file.ZZZ"
80 CAT "*.ZZZ";NAMES
90 WAIT 2
100 PURGE "file.ZZZ"
110 PRINT "File purged."
120 END

reorder EXAMPLE

10 OPTION BASE 1
20 DIM Matrix(3,3),Vector(3)
30 DATA 1, 2, 3, 4, 5, 6, 7, 8, 9, 3, 2, 1
40 RESTORE
50 READ Matrix(*),Vector(*)
60 CLEAR SCREEN
70 PRINT "The matrix looks like: "
80 Prtmat(Matrix(*),3,3)
90 MAT REORDER Matrix BY Vector,2
100 PRINT "MAT reorder"
110 Prtmat(Matrix(*),3,3)
120 END
130 SUB Prtmat(A(*),Lenarr,Widarr)
140! This sub prints out a matrix length of Lenarr and wide as widarr.
150! A 3x3 matrix would print like:
160! [1 2 3] Widarr = 3
170! [4 5 6]
180! [7 8 9]
190! Lenarr = 3
200 ASSIGN @Out TO CRT
210 FOR Col=1 TO Lenarr
220 OUTPUT @Out;" [";
230 FOR Row=1 TO Widarr
240 OUTPUT @Out;A(Col,Row);
250 NEXT Row
260 OUTPUT @Out;"]"
270 NEXT Col
280 ASSIGN @Out TO *
290 SUBEND

repeat_until EXAMPLE

10 Count=0
20 REPEAT
30 Count=Count+2
40 PRINT Count
50 UNTIL Count=10
60 PRINT "Test done."
70 END

res EXAMPLE

10 CLEAR SCREEN
20 PRINT "Demonstrating the RES command. It returns the answer "
30 PRINT "last calculated."
40 DISP "Enter a calculation (i.e. 2+2) and then press CONT"
50 PAUSE
60 PRINT "The result was:";RES
70 END

re-save EXAMPLE

10 CLEAR SCREEN
20 PRINT "Saving code. Creating file"
30 RE-SAVE "file.txt"
40 CAT "*.txt";NAMES
50 PAUSE
60 PRINT "Now, I will purge it."
70 PURGE "file.txt"
80 CAT "*.txt";NAMES
90 PRINT "File purged."
100 END

reset EXAMPLE

10 CLEAR SCREEN
20 PRINT "*** output TEST ****"
30 CREATE "test.txt",0
40 ASSIGN @File TO "test.txt";FORMAT ON
50 OUTPUT @File;"This is a test"
60 RESET @File
70 ENTER @File;Test$
80 PRINT Test$
90 ASSIGN @File TO *
100 PURGE "test.txt"
110 END

re-store key EXAMPLE

10 RE-STORE KEY "keys2"
20 READ KEY 1,Str$
30 PRINT "Key 1 was ";"EDIT";" now is QUIT -- Please type CONT"
40 SET KEY 1,"QUIT"
50 PAUSE
60 LOAD KEY "keys2"
70 PRINT "Keys are restored to normal."
80 PURGE "keys2"
90 END

restore EXAMPLE

10 DIM Array(4)
20 Here: DATA 1, 2, 3, 4, 5
30 RESTORE !RESTORE moves the pointer back to the beginning of the DATA.
40 CLEAR SCREEN
50 FOR Loop=1 TO 3
60 READ Array(*)
70 RESTORE Here
80 PRINT "The array: "
90 PRINT Array(*)
100 NEXT Loop
110 END

re-store EXAMPLE

10 CLEAR SCREEN
20 RE-STORE "junk.XXX"
30 PRINT "Storing code"
40 PRINT "Program paused"
41 PRINT "Press CONT"
50 PAUSE
60 PURGE "junk.XXX"
70 ON ERROR GOTO 110
80 CAT "junk.XXX";NAMES
90 PRINT "The file was not purged correctly"
100 STOP
110 PRINT "File purged"
120 END

resume interactive EXAMPLE

10 X=5
20 ON TIME (TIMEDATE+X) MOD 86400 GOTO Here
30 PRINT "I'll wait";X;"seconds. Keys disabled."
40 SUSPEND INTERACTIVE
50 Loop: GOTO Loop
60 Here: RESUME INTERACTIVE
70 PRINT "Test done."
80 END

return EXAMPLE

10 CLEAR SCREEN
20 GOSUB Here
30 PRINT "Test done."
40 STOP
50 Here: PRINT "Currently in the SUB."
60 RETURN
70 END

rev$ EXAMPLE

10 DIM Test$[30]
20 Test$="This is the string to reverse"
30 CLEAR SCREEN
40 PRINT Test$
50 PRINT
60 PRINT REV$(Test$) !Reverse the string.
70 END

rnd EXAMPLE

10 CLEAR SCREEN
20 PRINT "Yhatzee"
30 RANDOMIZE
40 FOR Loop=1 TO 5
50 PRINT "Die";Loop;":";INT(RND*6)+1
60 NEXT Loop
70 END

rotate EXAMPLE

10 INTEGER X,Y
20 X=100
30 Msg("Original bits")
40 See(X)
50 PRINT
60 Y=ROTATE(X,5)
70 Msg("ROTATE shifts the bits with wrap-around")
80 See(Y)
90 END
100 SUB See(INTEGER X)
110 FOR Loop=15 TO 0 STEP -1
120 Temp=BIT(X,Loop)
130 PRINT Temp;
140 NEXT Loop
150 SUBEND
160 SUB Msg(Str$)
170 PRINT Str$
180 SUBEND

rplot EXAMPLE

10 CLEAR SCREEN
20 GINIT
30 MOVE 40,40
40 RECTANGLE 10,20
50 DISP "1"
60 WAIT 1
70 AREA PEN 3
80 RPLOT 5,2
90 RECTANGLE 10,-20,FILL
100 DISP "2"
110 WAIT 1
120 PEN 2
130 RECTANGLE -10,-20,EDGE
140 DISP "3"
150 WAIT 1
160 AREA PEN 7
170 PEN 8
180 RECTANGLE -10,20,FILL,EDGE
190 DISP "4"
200 WAIT 1
210 DISP
220 END

rpt$ EXAMPLE

10 DIM Test$[80]
20 Test$=RPT$("*",20)
30 PRINT RPT$("=",3),Test$
40 END

rsum EXAMPLE

10 OPTION BASE 1
20 DIM Matrix(3,3)
30 DIM Vector(3)
40 DATA 1, 2, 3, 4, 5, 6, 7, 8, 9
50 RESTORE
60 READ Matrix(*)
70 CLEAR SCREEN
80 PRINT "The matrix looks like: "
90 Prtmat(Matrix(*),3,3)
100 MAT Vector=RSUM(Matrix)
110 PRINT "The RSUM vector is [";Vector(*);"]"
120 END
130 SUB Prtmat(A(*),Lenarr,Widarr)
140! This sub prints out a matrix length of Lenarr and wide as widarr.
150! A 3x3 matrix would print like:
160! [1 2 3] Widarr = 3
170! [4 5 6]
180! [7 8 9]
190! Lenarr = 3
200 ASSIGN @Out TO CRT
210 FOR Col=1 TO Lenarr
220 OUTPUT @Out;" [";
230 FOR Row=1 TO Widarr
240 OUTPUT @Out;A(Col,Row);
250 NEXT Row
260 OUTPUT @Out;"]"
270 NEXT Col
280 ASSIGN @Out TO *
290 SUBEND

runlight EXAMPLE

10 CLEAR SCREEN
20 RUNLIGHT OFF
30 FOR J=1 TO 5
40 WAIT 1
50 PRINT J
60 NEXT J
70 END

save EXAMPLE

10 CLEAR SCREEN
20 PRINT "Saving code. Creating file"
30 SAVE "file.txt"
40 PRINT "Program paused."
50 PAUSE
60 PURGE "file.txt"
70 PRINT "File purged."
80 END

sc EXAMPLE

10 CLEAR SCREEN
20 ASSIGN @Out TO CRT
30 PRINT "The ISC for @Out is ";SC(@Out);"."
40 ASSIGN @Out TO *
50 END

scratch EXAMPLE

10 ! SCRATCH !This command will clear the current program out of
memory.
20 ! SCRATCH KEY 2 !This command will clear the F2 softkey.
30 ! SCRATCH A !This command clears all variables of the basic program
and the program also.
40 ! SCRATCH ALL !This command is synonymous with SCRATCH A.
50 ! SCRATCH B !This command is synonymous with SCRATCH A.
60 ! SCRATCH BIN !This command is synonymous with SCRATCH A.
70 ! SCRATCH C !This command clears all variable of the basic program,
but leaves the program intact.
80 ! SCRATCH COM !This command is synonymous with SCRATCH C.
90 ! SCRATCH R !This command clears teh keyboard RECALL buffer.
100 ! SCRATCH RECALL !This command is synonymous with SCRATCH R.
110 END

select_case EXAMPLE

10 CLEAR SCREEN
20 INPUT "Please enter your age:",Age
30 SELECT Age
40 CASE <1,>100
50 PRINT "Congratulations - Movie is free!"
60 GOTO End
70 CASE <12
80 Price=2.00
90 CASE 12 TO 59
100 Price=6.50
110 CASE 60
120 PRINT "Special movie rate"
130 Price=3.00
140 CASE ELSE
150 Price=4.50
160 END SELECT
170 Image: IMAGE "Movie price is $", D.2D
180 PRINT USING Image;Price
190 End: END

separate alpha EXAMPLE

10 MERGE ALPHA WITH GRAPHICS
20 CLEAR SCREEN
30 PRINT "With Alpha and Graphics merged, the text and"
40 PRINT "graphics should disappear with a CLEAR SCREEN"
50 PAUSE
60 MOVE 0,60
70 AREA PEN 4
80 RECTANGLE 30,30,FILL
90 WAIT 2
100 SEPARATE ALPHA FROM GRAPHICS
110 CLEAR SCREEN
120 PRINT "This text should disappear with a CLEAR SCREEN"
130 PRINT "The square should not be erased"
140 MOVE 0,60
150 AREA PEN 7
160 RECTANGLE 30,30,FILL
170 WAIT 2
180 CLEAR SCREEN
190 WAIT 1
200 PRINT "Notice the square is not erased!"
210 END

set echo EXAMPLE

10 PLOTTER IS CRT,"INTERNAL";COLOR MAP
20 CLEAR SCREEN
30 SET ECHO 65,50 !Set the crosshair to the middle of the screen.
40 READ LOCATOR X,Y !Read where the mouse pointer is at.
50 PRINT X,Y
60 END

set key EXAMPLE

10 CLEAR SCREEN
20 PRINT "Program shows soft key control statements."
30 STORE KEY "keys2"! store softkey definitions
40 READ KEY 1,Str$! read current key label
50 PRINT "Key 1 was ";Str$;" now is QUIT -- Please type CONT"
60 SET KEY 1,"QUIT"! change key label
70 PAUSE
80 LOAD KEY "keys2"! load original sofkey definitions
90 PRINT "Key 1 is back to normal."
100 PURGE "keys2"! delete file.
110 END

set locator EXAMPLE

10 CLEAR SCREEN
20 SET LOCATOR 0,0
30 WHILE KBD$=""
40 READ LOCATOR X,Y !Move the mouse around.
50 PRINT X,Y
60 WAIT 1
70 END WHILE
80 END

set pen EXAMPLE

10 DATA .5,.5,.5 ! 8 = dark grey
20 DATA .75,.75,.75 ! 9 = light grey
30 DATA .5, 0, 0 ! 10 = dark red
40 DATA .5,.5, 0 ! 11 = dark yellow
50 DATA 0,.5, 0 ! 12 = dark green
60 DATA 0,.5,.5 ! 13 = dark cyan
70 DATA 0, 0,.5 ! 14 = dark blue
80 DATA .5, 0,.5 ! 15 = dark magenta
90 RESTORE
100 DIM Palette(8:15,1:3)
110 CLEAR SCREEN
120 PRINT "*** SET PEN TEST ****"
130 PLOTTER IS CRT,"INTERNAL";COLOR MAP
140 READ Palette(*)
150 SET PEN 8 INTENSITY Palette(*)
160 X=0
170 Y=85
180 FOR Loop=8 TO 15
190 MOVE X,Y
200 AREA PEN Loop
210 RECTANGLE 10,10,FILL,EDGE
220 WAIT 1
230 X=X+10
240 NEXT Loop
250 END

set time EXAMPLE

10 Current_time=TIMEDATE
20 CLEAR SCREEN
30 PRINT "Setting time to 1:00 P.M."
40 SET TIME TIME("13:00:00")
50 PRINT "Press CONT to continue..."
60 PAUSE
70 SET TIMEDATE Current_time !Change the timedate to Current_time.
80 PRINT "The time might be off a bit."
90 END

set timedate EXAMPLE

10 Current_time=TIMEDATE
20 CLEAR SCREEN
30 PRINT "Setting time to 12:00 P.M. June 11, 1976"
40 SET TIMEDATE TIME("12:00:00")+DATE("11 Jun 1976")
50 PRINT "Press CONT to continue..."
60 PAUSE
70 SET TIMEDATE Current_time
80 PRINT "The time might be off a bit."
90 END

sgn EXAMPLE

10 CLEAR SCREEN
20 IF SGN(-87)=-1 THEN PRINT "-87 is negative"
30 IF SGN(9)=1 THEN PRINT "9 is positive"
40 IF SGN(0)=0 THEN PRINT "0 is zero"
50 END

shift EXAMPLE

10 INTEGER Y
20 Y=1000
30 CLEAR SCREEN
40 Msg("Original bits")
50 See(Y)
60 Y=SHIFT(Y,5) !Shift the bits of Y over by 5 bits.
70 PRINT
80 Msg("Shift the bits over by 5")
90 See(Y)
100 END
110 SUB See(INTEGER X)
120 FOR Loop=15 TO 0 STEP -1
130 Temp=BIT(X,Loop)
140 PRINT Temp;
150 NEXT Loop
160 SUBEND
170 SUB Msg(Str$)
180 PRINT Str$
190 SUBEND

sin EXAMPLE

10! This example deminstrates the usage of the trigonometric
20! functions. The following triangle will be used:
30!
40! |\
50! |a \ Given C = 5 units and angle c = 35 degrees
60! C| \B
70! |b c\ Note: angle b = 90 dgrees.
80! +--------
90! A
100 CLEAR SCREEN
110 DEG ! get in degree mode
120 REAL A,B,C
130! Given:
140 C=5.0
150 Angle_b=90
160 Angle_c=35
170! Angle a can be found by simply subtracting the total given
180! angles by 1800 degrees. Every triangle only has 180
190! degress.
200 Angle_a=180-(Angle_c+Angle_b)
210! The sine of angle c is definded as C over B. Solving for
220! B gives us:
230 B=C/SIN(Angle_c)
240! The cosine of angle c is definded as A over B. Solving for
250! A gives us:
260 A=B*COS(Angle_c)
270! To double check the answers, onte posible way is:
280! Given: A^2 + C^2 = B^2 and solving for C
290 X=SQR(B^2-A^2)
300 X=DROUND(X,1)
310 IF X=C THEN
320 PRINT "The leg A =";A;"units."
330 PRINT "The leg B =";B;"units."
340 PRINT "The leg C =";C;"units."
350 PRINT "Angle a is = ";Angle_a;"degrees."
360 PRINT "Angle b is = ";Angle_b;"degrees."
370 PRINT "Angle c is = ";Angle_c;"degrees."
380 ELSE
390 PRINT "An error has occured."
400 END IF
410 END

sinh EXAMPLE

10 COMPLEX C
20 C=CMPLX(4,7)
30 CLEAR SCREEN
40 PRINT "SINH of 80 is:";SINH(80)
50 X=REAL(SINH(C))
60 Y=SINH(REAL(C))*COS(IMAG(C))
70 PRINT "x=";X,"y=";Y
80 IF X=Y THEN
90 PRINT "True"
100 ELSE
110 PRINT "False - error in documentation."
120 END IF
130 X=IMAG(SINH(C))
140 Y=COSH(REAL(C))*SIN(IMAG(C))
150 PRINT "x=";X,"y=";Y
160 IF X=Y THEN
170 PRINT "True"
180 ELSE
190 PRINT "False - error in documentation."
200 END IF
210 END

size EXAMPLE

10 OPTION BASE 1
20 DIM A(16,6)
30 CLEAR SCREEN
40 Pass_a(A(*))
50 PRINT "After REDIM"
60 REDIM A(7,3)
70 Pass_a(A(*))
80 END
90 SUB Pass_a(REAL A(*))
100 L=RANK(A)
110 PRINT "The number of elements in each dimension of A is
(";SIZE(A,1);",";SIZE(A,2);")"
120 SUBEND

spanish EXAMPLE

10 LEXICAL ORDER IS SPANISH
20 PRINT SYSTEM$("LEXICAL ORDER IS")
30 END

sqr EXAMPLE

10! Please note SQRT and SQR are exactly the same. In fact,
20! SQRT is parced to mean SQR.
30 Number=49
40 COMPLEX Z
50 Z=CMPLX(4,7)
60 CLEAR SCREEN
70 PRINT "The squre root of ";Number;" is:";SQR(Number)
80 PRINT
90 PRINT "Testing the square root of complex numbers."
100 X=REAL(SQR(Z))
110 Y=SQR((SQR(REAL(Z)^2+IMAG(Z)^2)+REAL(Z))/2)
120 PRINT X;"=";Y
130 IF (X=Y) THEN PRINT "Check"
140 X=IMAG(SQR(Z))
150 Y=SGN(Z)*SQR((SQR(REAL(Z)^2+IMAG(Z)^2)-REAL(Z))/2)
160 PRINT X;"=";Y
170 IF (X=Y) THEN
180 PRINT "Check"
190 ELSE
200 PRINT "What a minute. What is the Y for?"
210 END IF
220 PRINT
230 Drawtriangle
240 PRINT "Given a^2 + b^2 = c^2, then c = sqr(a^2 + b^2)"
250 A=3
260 B=4
270 C=SQR(A^2+B^2)
280 PRINT "a = ";A
290 PRINT "b = ";B
300 PRINT "c = ";C
310 END
320 SUB Drawtriangle
330 PRINT " |\"
340 PRINT "a| \ c"
350 PRINT " +++++"
360 PRINT " b"
370 SUBEND

sqrt EXAMPLE

10! Please note SQRT and SQR are exactly the same. In fact,
20! SQRT is parced to mean SQR.
30 Number=49
40 COMPLEX Z
50 Z=CMPLX(4,7)
60 CLEAR SCREEN
70 PRINT "The squre root of ";Number;" is:";SQR(Number)
80 PRINT
90 PRINT "Testing the square root of complex numbers."
100 X=REAL(SQR(Z))
110 Y=SQR((SQR(REAL(Z)^2+IMAG(Z)^2)+REAL(Z))/2)
120 PRINT X;"=";Y
130 IF (X=Y) THEN PRINT "Check"
140 X=IMAG(SQR(Z))
150 Y=SGN(Z)*SQR((SQR(REAL(Z)^2+IMAG(Z)^2)-REAL(Z))/2)
160 PRINT X;"=";Y
170 IF (X=Y) THEN
180 PRINT "Check"
190 ELSE
200 PRINT "What a minute. What is the Y for?"
210 END IF
220 PRINT
230 Drawtriangle
240 PRINT "Given a^2 + b^2 = c^2, then c = sqr(a^2 + b^2)"
250 A=3
260 B=4
270 C=SQR(A^2+B^2)
280 PRINT "a = ";A
290 PRINT "b = ";B
300 PRINT "c = ";C
310 END
320 SUB Drawtriangle
330 PRINT " |\"
340 PRINT "a| \ c"
350 PRINT " +++++"
360 PRINT " b"
370 SUBEND

standard EXAMPLE

10 LEXICAL ORDER IS STANDARD
20 PRINT SYSTEM$("LEXICAL ORDER IS")
30 END

status EXAMPLE

10 PRINT STATUS(CRT,9) !Gets the screen width.
20 PRINT STATUS(CRT,13) !Gets the screen height.
30 PRINT STATUS(CRT,17) !Gets the input line color.
40 END

step EXAMPLE

10 FOR J=40 TO 500 STEP 20
20 PRINT J
30 NEXT J
40 END

stop EXAMPLE

10 CLEAR SCREEN
20 PRINT "I can stop the program before it is finished."
30 STOP
40 END

store key EXAMPLE

10 CLEAR SCREEN
20 STORE KEY "keys2"
30 READ KEY 1,Str$
40 PRINT "Key 1 was ";Str$;" now is QUIT -- Please type CONT"
50 SET KEY 1,"QUIT"
60 PAUSE
70 LOAD KEY "keys2"
80 PRINT "Key 1 returned to normal."
90 PURGE "keys2"
100 END

store EXAMPLE

10 CLEAR SCREEN
20 STORE "junk.XXX"
30 PRINT "Saving code as"
40 CAT "junk.XXX";NAMES
50 PRINT "Program paused."
60 PAUSE
70 PURGE "junk.XXX"
80 ON ERROR GOTO 120
90 CAT "junk.XXX";NAMES
100 PRINT "The file was not purged properly"
110 STOP
120 PRINT "File purged"
130 END

sub EXAMPLE

10 CLEAR SCREEN
20 Mysub
30 END
40 SUB Mysub
50 PRINT "In My SUB"
60 SUBEND

subend EXAMPLE

10 CLEAR SCREEN
20 Mysub
30 END
40 SUB Mysub
50 PRINT "In My SUB"
60 SUBEND

sum EXAMPLE

10 DIM Array(4)
20 DATA 1, 2, 3, 4, 5
30 RESTORE
40 CLEAR SCREEN
50 READ Array(*)
60 PRINT "The sum of the array: "
70 PRINT Array(*)
80 PRINT "is";SUM(Array);"."
90 END

suspend interactive EXAMPLE

10 X=5
20 ON TIME (TIMEDATE+X) MOD 86400 GOTO Here
30 PRINT "I'll wait";X;"seconds. Keys disabled."
40 SUSPEND INTERACTIVE
50 Loop: GOTO Loop
60 Here: RESUME INTERACTIVE
70 PRINT "Test done."
80 END

swedish EXAMPLE

10 LEXICAL ORDER IS SWEDISH
20 PRINT SYSTEM$("LEXICAL ORDER IS")
30 END

symbol EXAMPLE

10 DIM A(6,2)
20 DATA 1, 7, -2, 16, 7, -1, 15, 4, -1, 21, 8, -1, 15, 12, -1, 16, 9, -1,
1, 9, -1
30 RESTORE
40 CLEAR SCREEN
50 GINIT
60 READ A(*)
70 MOVE 50,50
80 PEN 6
90 AREA PEN 7
100 SYMBOL A(*),FILL,EDGE
110 END

system keys EXAMPLE

10 SYSTEM KEYS
20 END

system priority EXAMPLE

10 CLEAR SCREEN
20 SYSTEM PRIORITY 1
30 PRINT "Priority: "&SYSTEM$("SYSTEM PRIORITY")
40 END

system$ EXAMPLE

10 CLEAR SCREEN
20 PRINT "*** System$ TEST ****"
30 PRINT "Memory "&SYSTEM$("AVAILABLE MEMORY")
40 PRINT "CRT ID: "&SYSTEM$("CRT ID")
50 PRINT "DISP line: "&SYSTEM$("DISP LINE")
60 PRINT "Dump devices: "&SYSTEM$("DUMP DEVICE IS")
70 PRINT "Graphics: "&SYSTEM$("GRAPHICS INPUT IS") !401
80 PRINT "Input line is: "&SYSTEM$("KBD LINE")
90 PRINT "Lexical order: "&SYSTEM$("LEXICAL ORDER IS")
100 PRINT "Mss memory: "&SYSTEM$("MASS MEMORY")
110 PRINT "Mass storage: "&SYSTEM$("MSI")
120 PRINT "Plotter: "&SYSTEM$("PLOTTER IS")
130 PRINT "Printer: "&SYSTEM$("PRINTER IS")
140 PRINT "Process ID: "&SYSTEM$("PROCESS ID")
150 PRINT "Serial number: "&SYSTEM$("SERIAL NUMBER") !401
160 PRINT "System ID: "&SYSTEM$("SYSTEM ID")
170 PRINT "Priority: "&SYSTEM$("SYSTEM PRIORITY")
180 PRINT "Timezone: "&SYSTEM$("TIMEZONE IS")
190 PRINT "Trig mode: "&SYSTEM$("TRIG MODE")
200 PRINT "BASIC ver: "&SYSTEM$("VERSION:BASIC")
210 PRINT SYSTEM$("VERSION:HTB")
220 PRINT "OS ver: "&SYSTEM$("VERSION:OS")
230 PRINT "Wild cards are: "&SYSTEM$("WILDCARDS")
240 PRINT "Window system: "&SYSTEM$("WINDOW SYSTEM")
250 END

tab EXAMPLE

10 CLEAR SCREEN
20 PRINT "*** Print TEST ****"
30 PRINT "[TAB]";TAB(15);"15 spaces"
40 PRINT TABXY(5,5);"TABXY test"
50 END

tabxy EXAMPLE

10 CLEAR SCREEN
20 PRINT "*** Print TEST ****"
30 PRINT "[TAB]";TAB(15);"15 spaces"
40 PRINT TABXY(5,5);"TABXY test"
50 END

tan EXAMPLE

10! This example deminstrates the usage of the trigonometric
20! functions. The following triangle will be used:
30!
40! |\
50! |a \ Given C = 5 units and angle c = 35 degrees
60! C| \B
70! |b c\ Note: angle b = 90 dgrees.
80! +--------
90! A
100 CLEAR SCREEN
110 DEG ! get in degree mode
120 REAL A,B,C
130! Given:
140 C=4
150 Angle_c=60
160 Angle_b=90
170! Angle a can be found by simply subtracting the total given
180! angles by 180 degrees. Every triangle only has 180
190! degress.
200 Angle_a=180-(Angle_c+Angle_b)
210! The sine of angle c is definded as C over B. Solving for
220! B gives us:
230 B=C/SIN(Angle_c)
240! The tangent of angle c is definded as C over A. Solving for
250! A gives us:
260 A=C/TAN(Angle_c)
270! To double check the answers, one possible way is:
280! Given: A^2 + C^2 = B^2 and solving for C
290 IF SQR(B^2-A^2)=C THEN
300 PRINT "The leg A =";A;"units."
310 PRINT "The leg B =";B;"units."
320 PRINT "The leg C =";C;"units."
330 PRINT "Angle a is = ";Angle_a;"degrees."
340 PRINT "Angle b is = ";Angle_b;"degrees."
350 PRINT "Angle c is = ";Angle_c;"degrees."
360 ELSE
370 PRINT "An error has occured."
380 END IF
390 END

tanh EXAMPLE

10 CLEAR SCREEN
20 PRINT "The TANH of 80 is:";TANH(80) !Returns the hyperbolic tangent of
80.
30 END

then EXAMPLE

10 IF 1 THEN
20 CLEAR SCREEN
30 PRINT 5
40 BEEP
50 ELSE
60 PRINT "NO"
70 STOP
80 END IF
90 END

time$ EXAMPLE

10 CLEAR SCREEN
20 PRINT TIME$(TIMEDATE)
30 END

time1 EXAMPLE

10 CLEAR SCREEN
20 PRINT "There have been";TIME(TIME$(TIMEDATE));"seconds pass"
30 PRINT "since midnight"
40 END

timedate EXAMPLE

10 CLEAR SCREEN
20 PRINT DATE$(TIMEDATE),TIME$(TIMEDATE)
30 PRINT "Number of seconds since midnight:";TIMEDATE MOD 86400
40 PRINT "The number of seconds from 4713 B.C. is",FNJd(DATE$(TIMEDATE))
50 END
60 DEF FNJd(A$)
70 RETURN (DATE(A$) DIV 86400)-1
80 FNEND

timeout EXAMPLE

10 !LOAD BIN "SERIAL32"
20 ON TIMEOUT 9,1 GOTO 60
30 PRINT "WAITING..."
40 ENTER 9;X$
50 GOTO 30
60 PRINT "IT TIMED OUT"
70 END

to EXAMPLE

10 FOR J=40 TO 500 STEP 20
20 PRINT J
30 NEXT J
40 END

trace EXAMPLE

10 TRACE ALL
20 FOR J=40 TO 100 STEP 10
30 PRINT J
40 IF J=60 THEN TRACE OFF
50 NEXT J
60 END

track EXAMPLE

10 CLEAR SCREEN
20 TRACK CRT IS ON
30 DIGITIZE X,Y,Stat$!Move the mouse around the screen.
40 PRINT "x:";X,"y:";Y !It should be traced wherever it goes.
50 PRINT "Status: ";Stat$
60 PRINT "Track is ";Stat$[5,5]
70 IF Stat$[5,5]="1" THEN
80 PRINT "ON"
90 ELSE
100 PRINT "OFF"
110 END IF
120 END

transfer EXAMPLE

10 CLEAR SCREEN !This test requires two machines
connected by
20 PRINT "*** Transfer Test ****" !serial cables. One running this
program, and
30 DIM A$[50] !the other outputing information to
this one.
40 ASSIGN @Buf TO BUFFER [2000]
50 ASSIGN @In TO 9
60 TRANSFER @In TO @Buf
70 ENTER @Buf;A$
80 PRINT A$
90 GOTO 70
100 END

trim$ EXAMPLE

10 Test$=TRIM$("hello ") !Trim off the extra spaces.
20 PRINT "'";Test$;"' is of length";LEN(Test$)
30 END

trn EXAMPLE

10 DIM Matrix(1:3,1:3),M(1:3,1:3)
20 DATA 1, 2, 3, 4, 5, 6, 7, 8, 9
30 RESTORE
40 READ Matrix(*)
50 CLEAR SCREEN
60 PRINT "The matrix looks like: "
70 Prtmat(Matrix(*),3,3)
80 MAT M=TRN(Matrix)
90 PRINT "Transpose matrix"
100 Prtmat(M(*),3,3)
110 END
120 SUB Prtmat(A(*),Lenarr,Widarr)
130 ! This sub prints out a matrix length of Lenarr and wide as Widarr.
140 ! A 3x3 matrix would print like:
150 ! [1 2 3] Widarr = 3
160 ! [4 5 6]
170 ! [7 8 9]
180 ! Lenarr = 3
190 ASSIGN @Out TO CRT
200 FOR Col=1 TO Lenarr
210 OUTPUT @Out;" [";
220 FOR Row=1 TO Widarr
230 OUTPUT @Out;A(Col,Row);
240 NEXT Row
250 OUTPUT @Out;"]"
260 NEXT Col
270 ASSIGN @Out TO *
280 SUBEND

unlock EXAMPLE

10 CLEAR SCREEN
20 PRINT "*** Unlock Test ****"
30 PRINT
40 CREATE "test.txt",100
50 DIM Test$[100]
60 ASSIGN @File TO "test.txt";FORMAT ON
70 PRINT "CAT after assignment..."
80 CAT "test.txt";NO HEADER
90 OUTPUT @File;"This is the contents of test.txt"
100 RESET @File
110 ENTER @File;Test$
120 PRINT
130 PRINT Test$
140 PRINT
150 LOCK @File;CONDITIONAL Error !This locks a file
while you are working on it.
160 PRINT "CAT after lock..."
170 CAT "test.txt";NO HEADER
180 PRINT
190 PRINT "Lock result is";Error
200 UNLOCK @File !This unlocks the
file.
210 PRINT
220 PRINT "CAT after unlock..."
230 CAT "test.txt";NO HEADER
240 ASSIGN @File TO * !This will also
unlock the file. Comment out the unlock
250 PRINT !statement to show
this.
260 PRINT "CAT after file is closed..."
270 CAT "test.txt";NO HEADER
280 PURGE "test.txt"
290 END

until EXAMPLE

10 CLEAR SCREEN
20 Loop=0
30 REPEAT
40 Loop=Loop+1
50 PRINT Loop
60 WAIT 1
70 UNTIL Loop=10
80 PRINT "If the last number printed is 10, then the test passed."
90 END

upc$ EXAMPLE

10 Test$=UPC$("hello") !Convert the string to all uppercase letters.
20 PRINT Test$
30 END

user keys EXAMPLE

10 KBD CMODE OFF
20 FOR Loop=1 TO 3
30 USER Loop KEYS
40 WAIT 2
50 NEXT Loop
60 USER 1 KEYS
70 END

using EXAMPLE

10 OPTION BASE 1
20 DIM A(3,3)
30 DATA -4, 36, 2.3, 5, 89, 17, -6, -12, 42, 1, 2, 3
40 RESTORE
50 ! Format (Fmt) for specified matrix (3x3)
60 Fmt3x3: IMAGE 3("[",3DD.DD,3DD.DD,3DD.DD,"]",/)
70 CLEAR SCREEN
80 READ A(*)
90 PRINT USING Fmt3x3;A(*)
100 END

val$ EXAMPLE

10 DIM A$[80]
20 A$=VAL$(34)
30 PRINT A$
40 A$=VAL$(-674)
50 PRINT A$
60 A$=VAL$(3.14)
70 PRINT A$
80 A$=VAL$(4567349765)
90 PRINT A$
100 END

val1 EXAMPLE

10 PRINT VAL("1")
20 PRINT VAL("34")
30 PRINT VAL("-674")
40 PRINT VAL(VAL$(3.14))
50 PRINT VAL(VAL$(4567349765))
60 END

viewport EXAMPLE

10 CLEAR SCREEN
20 VIEWPORT 40,80,40,80
30 FRAME
40 RECTANGLE 10,10,FILL,EDGE
50 GRID 10,10
60 END

wait EXAMPLE

10 PRINT "I'll wait 5 seconds."
20 WAIT 5
30 PRINT "I'm done"
40 END

where EXAMPLE

10 CLEAR SCREEN
20 DIM Stat$[3],Msg$[40]
30 PRINT "*** TEST ****"
40 PRINT "Returning the logical pen position."
50 WHERE X,Y,Stat$
60 PRINT "X = ";X
70 PRINT "Y = ";Y
80 IF Stat$[1,1]="1" THEN
90 PRINT "Pen is down"
100 ELSE
110 PRINT "Pen is up"
120 END IF
130 PRINT "Comma delimitor character: ";Stat$[2,2]
140 SELECT Stat$[3,3]
150 CASE "0"
160 Msg$="outside the limits"
170 CASE "1"
180 Msg$="inside the limits, but outside the viewport"
190 CASE "2"
200 Msg$="inside limits and viewport"
210 CASE ELSE
220 Msg$="junk"
230 END SELECT
240 PRINT "Clip indicator - the point is "&Msg$
250 END

while EXAMPLE

10 Good=6
20 PRINT "Count down using WHILE loop."
30 WHILE Good
40 PRINT Good
50 Good=Good-1
60 END WHILE
70 PRINT "All finished."
80 END

width EXAMPLE

10 CLEAR SCREEN
20 PRINT "Hello world, I am the computer." !Prints sentence across screen
30 PRINTER IS CRT;WIDTH 8 !Changes text width of screen
40 PRINT "Hello world, I am the computer." !Prints sentence using new text
width
50 END

wildcards EXAMPLE

10 WILDCARDS OFF !Turns wildcard usage off
20 CAT "*a*.*" !Does a catalog
30 END

Welcome to the HTBasic Help system. The HTBasic Help System consists of four books including; Installing and Using
Manual, User’s Guide, Reference Manual, and the Basic Plus Programming Guide/Reference Manual. Each of these books is
outlined below.

Installing and Using Manual

The Installing and Using Manual details the installation process and initial configuration instructions for HTBasic.
HTBasic is highly configurable including loadable device drivers, customizing keyboard key assignments, defining additional
LABEL characters or configuring your PC to duplicate the workstation environment. The following topics are found in the Installing
and Using Manual:

· Installing HTBasic for Windows · Printer & Pixel Image Device Drivers
· Getting Started · Graphic Input Drivers
· GUI Description · Customizing the Environment
· Using the Keyboard · Transferring Programs and Data from HP BASIC
· CRT and Graphic (Plotter) Drivers · Changes from Earlier Releases
· I/O Device Drivers

User's Guide

The User's Guide contains in-depth information about using the HTBasic language. It is arranged topically. These
advanced topics will allow the user to speed program development and more fully exploit the power of HTBasic. The following
topics are found in the User’s Guide:

· Language Elements · Program Flow Control
· Mathematics · Graphics
· General Input and Output · CRT, Keyboard, and Printer
· Files · IEEE-488 STATUS Registers
· Serial (RS-232) I/O · Other I/O Destinations & Sources
· DLL Toolkit · International Language Support

Reference Manual

The Reference Manual consists mainly of a dictionary style presentation of HTBasic keywords. Most keywords include
syntax definition, samples, description of the keyword, usage, and even sample programs.

The Reference Manual also includes a chapter of definitions, a statement summary table, a list of error messages and
an ASCII code chart. The ASCII code chart contains ASCII, decimal and hexadecimal values, and IEEE-488 commands and

addresses.

Basic Plus Manuals

The Basic Plus Manuals contains detailed information for programming the Basic Plus Graphical User Interface.
HTBasic Plus is a system of commands, utilities, and applications designed to enhance HTBasic programs. It provides a set of
commands to create dialogs and widgets for effective graphical user interfaces.

Copyright ® 1988-2001 by TransEra Corp.
Distributed with Release 8.3 March 2001

 {ewl RoboEx32.dll, WinHelp2000, }

